Расскажи – и я забуду
Покажи – и я запомню
Дай мне сделать самому
– и я научусь.

Китайская мудрость

далее

pptcloud.r

Бесконтактная подзарядка батарей

THE PROPERTY OF THE PROPERTY O

Возможность подзаряжать батарею телефона без использования проводов предложила фирма NTT DoCoMo. Совместно с Panasonic Mobile Communications компания разработала бесконтактный блок подзарядки, работающий благодаря явлению электромагнитной индукции.

Для работы системы в блоке и в телефоне устанавливается небольшая катушка индуктивности. На практике за 120 минут подзаряжается батарея телефона Р900і. Это на 33% дольше, чем обычным способом, но зато бесконтактная технология делает зарядное устройство защищенным от воды, удобна и позволяет в известной степени сэкономить место.

CHERTALIAN PROBABILIYA (1904) PR

Вопрос1

Что такое электрический ток и какое направление он имеет?

Электрическим током называется направленное движение заряженных частиц. Он всегда направлен от + к -

Вопрос2

Магнитная стрелка, находящаяся вблизи провода, по которому идет ток, поворачивается. Это происходит под действием

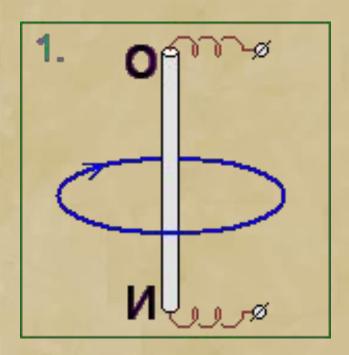

Только магнитного поля.

Вопрос 3

Два параллельных провода с токами, протекающими в одном направлении (_____). Это явление исследовал (_____)

притягиваются, Ампер

Задача №4

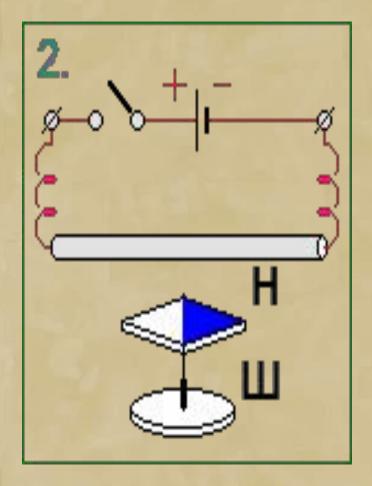


Проводник показанный на рис. притягивается к магниту, потому что:

на проводник действует сила Ампера

CONTROL AND TRANSPORTED TO THE CONTROL OF THE PROPERTY OF THE

Задача №5

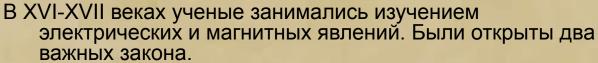


1. Мысленно поставьте стрелку по направлению тока. Острие укажет нужную букву.

Помогает правило «буравчика».

Если вращать рукоятку буравчика по направлению силовых линий магнитного поля, то поступательное движение буравчика («ввинчивается» или «вывинчивается») даст направление тока в проводнике. На рисунке получаем направление индукционного тока сверху — вниз. Нужная буква - «И»

CHAPTERS'S MAD EXPLOSION BY THE STATE OF THE SE


На какую букву укажет северный кончик стрелки при включении цепи?

Применим правило «буравчика». Т.к. ток течет от «+» к «-», то, для поступательного движения буравчика вправо, рукоятка буравчика должна вращаться по часовой стрелки. Следовательно в ту же сторону направлен вектор магнитной индукции. Так как у стрелки вектор магнитной индукции направлен по оси «юг - север», то стрелка повернется северным полюсом (синий конец) от нас, указав на букву «Н»

Электромагнитная RUHUKUKA

Историческая справка

Знакомство людей с электромагнитными явлениями произошло еще в глубокой древности. Египтяне и греки описывали разряды молнии и сопровождающее их свечение заостренных металлических предметов, «удары» электрических рыб — скатов. Свечение на остриях металлических предметов получило в Средние века название «огни святого Эльма», поскольку оно часто наблюдалось на крестах и шпилях церкви святого Эльма во Франции. Отмечено было свойство янтаря (драгоценного камня — электрона) после натирания шерстью притягивать к себе легкие предметы. Еще более древние упоминания относятся к магнитам. Магниты широко применялись в мореплавании, а также в медицине.

В XIX веке была создана классическая электродинамика – теория электромагнитного взаимодействия в макромире. В ее разработке принимали участие многие ученые.

Майкл Фарадей доказал окончательно, что электричество и магнетизм неразрывно связаны. Он обнаружил явление, которое получило название - электромагнитная индукция. Первым предложил понятие об электрическом и магнитном поле, окружающем магниты и проводники с током.

Майкл Фарадей

Опыты Фарадея

После опыта X.Эрстеда, который показал, что электрический ток порождает магнитное поле, стало понятно насколько тесно связаны электрические и магнитные явления. Поэтому все были уверены, что должно быть и обратное явление: магнитное поле может порождать электрический ток. Именно это явление пытались найти во многих лабораториях мира.

Опыты, на которых мы попытаемся объяснить в чем заключается явление электромагнитной индукции

опыт №1 опыт №2 опыт №3 выводы

Опыт №1

- История учит, что явление электромагнитной индукцию было открыто в тот момент, когда лаборант разомкнул цепь электромагнита (катушка провода, по которой идет ток. На рисунке к нему подходят красные провода) ток возник в катушке, в которую был он вставлен (синие провода на рисунке идут к прибору именно от этой катушки). Возникший ток называется индукционным.
- Индукционный ток возникает также и при замыкании цепи.
- Ток возникает кратковременный. Если изменений никаких нет, индукционного тока тоже нет.
- Наблюдаем различное направление индукционного тока при замыкании и размыкании цепи электромагнита.
- очевидно, что возникновение индукционного тока в этом опыте связано с изменением магнитного поля при замыкании и размыкании цепи электромагнита.

назад


CHARLES AND CONTRACTOR AND ALL SAFETY CONTRACTOR AND SECURITIES.

Опыт №2

 Индукционный ток возникает в катушке, которая подключена к прибору, при движении электромагнита.

CHAPTERS AND ESPENDED TO SERVE STORES

- Величина тока зависит от скорости движения электромагнита.
- Направление индукционного тока зависит от направления движения электромагнита (вставляем или вынимаем).
- очевидно, что возникновение индукционного тока в этом опыте связано с изменением магнитного поля при движении электромагнита.

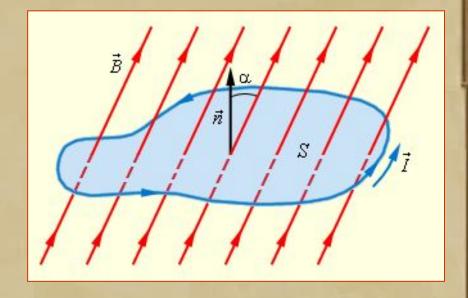
назад

LOCATE PERSONAL AND A TAXABLE PARTY OF STREET PROPERTY OF THE PARTY OF THE PARTY.

Опыт №3

 Индукционный ток возникает в катушке, которая подключена к прибору, при движении полосового магнита.

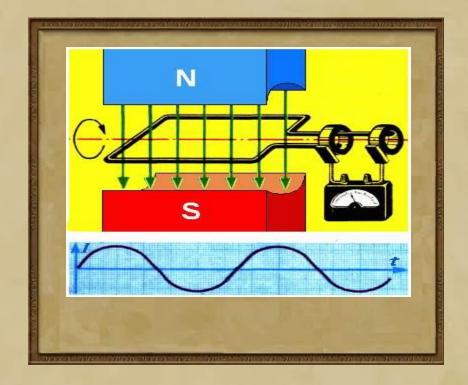
CHERRY AND THE RESIDENCE OF THE STREET


- Величина тока зависит от скорости движения магнита.
- Направление индукционного тока зависит от направления движения магнита (вставляем или вынимаем).
- Направление тока зависит от того, каким полюсом мы вставляем магнит в катушку.
- очевидно, что возникновение индукционного тока в этом опыте связано с изменением магнитного поля при движении магнита.

назад

вывод

- Явление наблюдается только во время процесса (когда что-то меняется),
- Величина тока зависит от скорости процесса
- В описанных опытах явление электромагнитной индукции возникает, когда меняется или магнитная индукция или угол между вектором магнитной индукции и нормалью к площадке. Это наводит на мысль о том, что на самом деле решающее значение имеет изменение потока магнитной индукции.



$$\Phi = B \cdot S \cdot \cos \alpha$$

Видеофрагмент

- Когда в катушке возникает индукционный ток?
- От чего зависит величина индукционного тока?
- С помощью чего можно приводить во вращение рамку?
- Почему основным элементом генератора является рамка, вращающаяся в магнитном поле?
- Объясните назначение гибких контактов (щеток) в генераторе переменного тока.

CONTRACTOR SERVICES TO SERVICES THE CONTRACTOR SERVICES AND A SERVICE AND A SERVICES AND A SERVICE AND A SERVICES AND A SERVICES AND A SERVICES AND A SERVICE AND A SERVICES AND A SERVICES AND A SERVICE

• Почему в реальном генераторе вместо рамки используют катушку с большим числом витков?

- 1. Генератор переменного тока.
- 2. Индукционный ток возникает в катушке (контуре) при ее вращении в магнитном поле.
- 3. Величина тока зависит от скорости вращения контура.
- 4. Во вращение рамку может приводить паровая машина, двигатель внутреннего сгорания, гидротурбина и т.д.
- 5. С помощью вращающейся рамки наиболее просто получать изменение магнитного потока через контур рамки.
- 6. С помощью гибких контактов снимается индуцированный заряд.
- 7. Для увеличения генерируемой ЭДС вместо рамки используют катушку с большим числом витков, называемую ротором.

Электромагнитная индукция и прибор ИТ-5

Назначение:

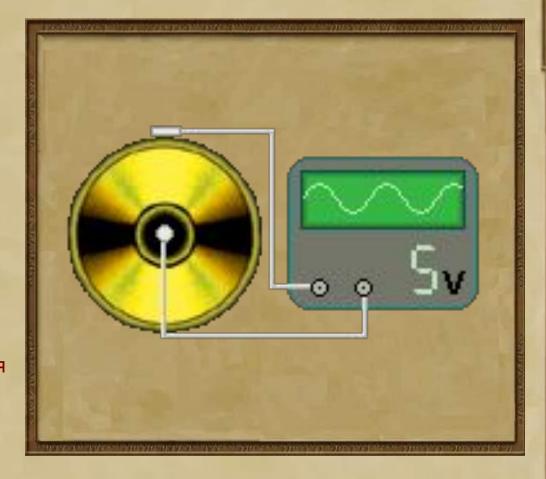
Применение в топографогеодезическом производстве при проведении работ по составлению и обновлению планов подземных коммуникаций.

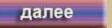
Принцип действия:

Основан на использовании электромагнитной индукции и заключается в обнаружении при помощи приёмника переменного электромагнитного поля, существующего вокруг токонесущих кабелей или искусственно создаваемого, при помощи генератора, вокруг трубопроводов и обесточенных кабелей.

Искатель выполняет функции индикатора при определении индукционным методом местоположения подземных металлических трубопроводов различного назначения и трасс энергосиловых кабелей и позволяет определить их планово-высотные положения.

CONTRACTOR OF THE SECRET FROM THE CONTRACTOR OF THE SECRET FROM THE SECRET FRO


Униполярная индукция


Явление униполярной индукции является частным случаем электромагнитной индукции и возникает при вращении проводящих тел, обладающих собственной намагниченностью либо помещенных во внешнее магнитное поле.

К вращающемуся намагниченному проводящему цилиндру при помощи двух скользящих контактов подсоединен вольтметр, измеряющий наводимую в замкнутой цепи ЭДС.

Униполярная индукция лежит в основе механизма возникновения ЭДС в магнитогидродинамических генераторах, позволяет объяснить формирование магнитных полей и динамику магнитосфер звезд, в частности, пульсаров.

CONTRACTOR AND ESTIMATED AND A PROPERTY CONTRACTOR

разминка

- 1. Кем открыто явление электромагнитной индукции?
- 2. Почему не возникает ток в проволочной катушке, подключенной к гальванометру, если магнит в катушке неподвижен?
- 3. Всегда ли электрический ток создает магнитное поле? Производит тепловое действие?
- 4. Какое свойство проводника характеризует его индуктивность?
- 5. Мимо сидящего в классе ученика лаборант проносит заряженный проводник. Для кого из них существует магнитное поле?
- 1. Разгадав ребус, узнаешь главную идею нашего урока.

Превратить магнетизм в электричество



- 1. Майкл Фарадей.
- 2. Нет изменения магнитного потока через катушку.

TO PERSON AND PROCESSING PROCESSING TO SERVICE STATES.

- 3. Магнитное поле всегда. Тепловое действие всегда.
- 4. Индуктивность характеризует размеры проводника и его форму.
- 5. Для ученика электрическое и магнитное поле. Для лаборанта электрическое.
- 6. Главная идея урока заключается в знаменитом высказывании Фарадея «Превратить магнетизм в электричество».

Самостоятельная работа

- 1.Получить тест-лист с заданиями у консультанта
- 2.Выполнить предложенные задания в рабочей тетради
- 3.Заполнить таблицу результатов в листе
- 4.Сдать тест-лист консультанту
- **5.Сравнить полученный результат с** самооценкой

Ваш уровень

Спасибо за работу.

Попробуйте повысить оценку выполнением домашней работы и активным участием на следующем уроке. Желаю успеха!

Ваш уровень

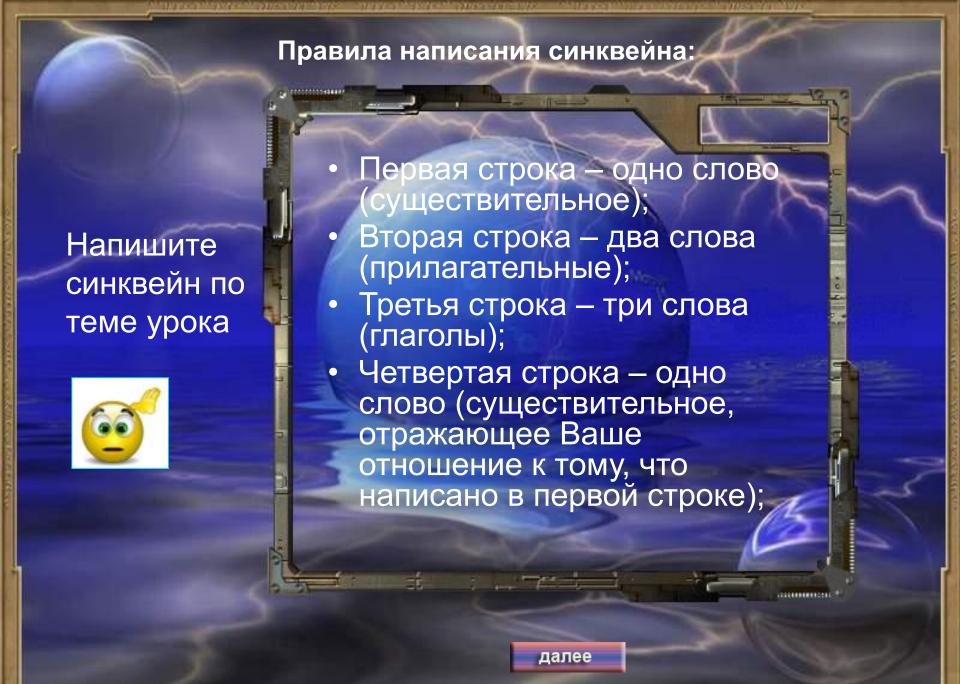
THE PROPERTY OF THE PROPERTY O

Спасибо за работу.

Ваш уровень достаточно высок, но можете попробовать повысить его через выполнение самостоятельной работы

Желаю успеха!




Ваш уровень

Спасибо за работу. Ваша оценка очень высока. Так держать. Желаю успеха!

CHERRY METERAMONTALISMENT OF THE PROPERTY OF A PROPERTY OF THE PROPERTY OF THE

Урок завершен

Спасибо за работу!