TPESCHTALIAN ITO CONTROLLA TOMY "SAKOH FEODIA OMA"

- Биография Георга Ома
- История закона
- Формулировка ЗАКОНА
- График зависимости силы тока от напряжения
- Зависимость силы тока от сопротивления
- Закон Ома в интегральной форме
- Закон Ома для участка цепи
- Закон Ома в дифференциальной форме
- Закон Ома для переменного тока
- Вывод

Родился в Эрлангере, в семье бедного слесаря. Мать Георга - Мария Елизавет, умерла при родах, когда мальчику исполнилось десять лет. Отец его - Иоганн Вольфганг, весьма развитой и образованный человек, с детства внушал сыну любовь к математике и физике, и поместил его в гимназию, которая курировалась университетом; по окончании курса в 1806 г. Наиболее известные работы Ома касались вопросов о прохождении электрического тока и привели к знаменитому «закону Ома», связывающему сопротивление цепи гальванического тока, электродвижущей в нём силы и силы тока, и лежащему в основе всего современного учения об электричестве.

MCTOPIA SAKORA OMA

Георг Ом, проводя эксперименты с проводником, установил, что сила тока I в проводнике пропорциональна напряжению U, приложенному к его концам:

I_{ν}	Л	И	U
I:	= 1	G	U

Ток, А	Напряжение, В	Сопротивление, Ом	Мощность, Вт
I	U	R	P

Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника.

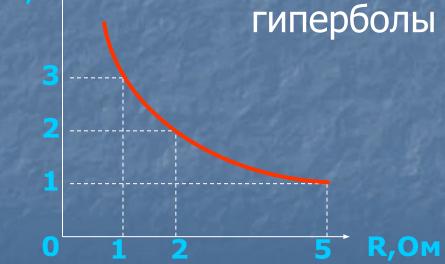
Закон Ома был открыт в 1827 году.

Закон Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению

График зависимости силы тока от напряжения

Сила тока
 пропорциональна
 напряжению I~U

График − линейная зависимость


I	2	4	8
U	5	10	20

Зависимость силы тока от сопротивления

Сила тока обратно пропорциональна сопротивлению

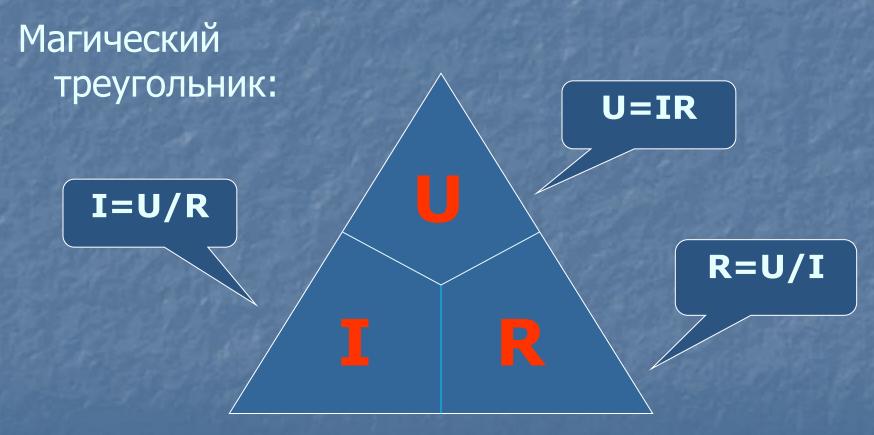
I	3	2	1
R	1	2	5

Bakor Oma B Mitterpandhon Chopme

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть нужную величину, и два других символа дадут формулу для ее вычисления Закон Ома для участка электрической цепи имеет вид:

U = RI

где:


U — напряжение

I — сила тока,

R — сопротивление.

Bakoh Oma Ana Wactka Lenn

BAROH OMA AMA TOPOMORHOTO TORA

Если цепь содержит не только активные, но и реактивные компоненты а ток является синусоидальным с циклической частотой ω, то закон Ома обобщается; величины, входящие в него, становятся комплексными:

где:

U — напряжение или разность потенциалов,

I — сила тока,

Z — комплексное сопротивление (импеданс),

R — полное сопротивление,

Rr — реактивное сопротивление (разность индуктивного и емкостного),

Ra — активное (омическое) сопротивление, не зависящее от частоты,

δ — сдвиг фаз между напряжением и силой тока.

Закон Ома это главный закон, объединяющий силу тока, напряжение и сопротивление.

I, U, R

Презентацию сделал Рогожкин Кирилл Сергеевич 8Б класс Российская Федерация Томская Область с. Молчаново 636330 Молчановская СОШ№2 Ул.Спортивная 2