Лекция № 1

Формирование квантовых понятий о свете

Н.В.Никитин

П.Р.Шарапова

Система единиц СГС СГС - сантиметр, грамм, секунда

Сила: дина (дин) 1 дин = 10⁻⁵ H

Работа: эрг 1 эрг = 10⁻⁷ Дж

Мощность: эрг/сек 1 эрг/сек =10⁻⁷ Вт

В механике системы СИ и СГС эквивалентны с точки зрения физики В электромагнетизме СГС более физична, чем СИ

СГС — абсолютная система, т.е. рассматривает электрические и магнитные величины как производные от механических величин

СИ — добавлена новая независимая единица: сила электрического тока (Ампер)

СГС -
$$[E] = [D] = [H] = \frac{m^{1/2}}{l^{3/2}t}$$
 Закон кулона: $F_q = -\frac{Q_1Q_2e^2}{r^2}\prod_n$, где $n = \frac{\Gamma}{r}$ и $e = +|e|$ - заряд протона,

 $oldsymbol{Q_1}$ и $oldsymbol{Q_2}$ - безразмерные постоянные, выражающие заряд в числах заряда

протона. Например:
$$\mathbf{Q_p} = +1$$
 $\mathbf{Q_e} = -1$ $\mathbf{Q_n} = 0$ $\mathbf{F} = -\nabla U$, где $\nabla = \mathbf{e}_1 \frac{\partial}{\partial x} + \mathbf{e}_2 \frac{\partial}{\partial y} + \mathbf{e}_3 \frac{\partial}{\partial z} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ «набла» или оператор Гамильтона,

Сила Лоренца: $F = Qe\left(E + \frac{1}{c}\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right)$

Соответствие: 1 Кл ≈ 3 10⁹ ед. заряда СГС

CN -
$$E \neq D \neq H$$

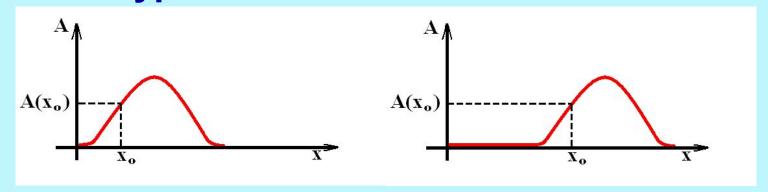
и далее в вакууме: $D = \varepsilon_0 E$ **НЕ ФИЗИЧНО!!** $\stackrel{\square}{B} = \stackrel{\circ}{\mu_0} \stackrel{\square}{H}$

 $\boldsymbol{\mathcal{E}}_{o}$ и $\boldsymbol{\mu}_{o}$ - электрическая и магнитная постоянные.

Электронвольт и его производные

Электронвольт (эВ) – внесистемная единица:

1 эВ – это энергия, которую приобретает микрочастица с зарядом, равным заряду электрона, при прохождении разности потенциалов в 1 В.


Удобно так как:

- 1) заряды микрочастиц кратны заряду электрона;
- 2) микрочастицы, в основном, взаимодействуют с электрическими и магнитными полями.

$$1 K \ni B = 10^3 \ni B, \quad 1 M \ni B = 10^6 \ni B, \quad 1 \Gamma \ni B = 10^9 \ni B$$
 \(\frac{1}{2} amom \) \(\frac{1}{2} s \partial p a \) \(\frac{1}{2} s \partial p a \) \(\frac{1}{2} s - 2 \) \(\frac

$$1 \ni B = 1,602 \, 176 \, 487(40) \times 10^{-12} \, \ni pz,$$

 $1 \ni B = 1,602 \, 176 \, 487(40) \times 10^{-19} \, \text{Дэнс}$

Волновое уравнение и комплексная экспонента

Волна характеризуется своей амплитудой A(x,t). Если форма волны не меняется, то: $A(x,t) = A(x_0) = A_{\bf b}$ олна ${\bf t}$ оснит вправо

волна бежит влево.

 \mathcal{V} – скорость распространения волны .

$$\frac{\partial A(x,t)}{\partial t} = \frac{\partial A(x,t)}{\partial x} \frac{\partial (x \square vt)}{\partial t} = \square v \frac{\partial A(x,t)}{\partial x}$$

 $\frac{\partial A(x,t)}{\partial t} = \frac{\partial A(x,t)}{\partial x} \frac{\partial (x \, \square \, vt)}{\partial t} = \square \, v \frac{\partial A(x,t)}{\partial x}$ Это уравнение не удобное, т.к. зависит от направления движения волны. Чтобы найти уравнение, справедливое для обоих случаев, **продифференцируем второй раз**:

$$\frac{\partial^2 A(x,t)}{\partial t^2} = \prod v \frac{\partial}{\partial x} \left(\frac{\partial A(x,t)}{\partial t} \right) = \left(\prod \right)^2 v^2 \frac{\partial^2 A(x,t)}{\partial x^2} \quad \Rightarrow \quad \frac{\partial^2 A(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 A(x,t)}{\partial t^2} = 0 \quad \checkmark \quad \text{равнение}$$

$$\frac{\partial^2 A(x,t)}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 A(x,t)}{\partial t^2} = 0$$
 — или в трех мерном случае,

где оператор Лапласа
$$\Delta = \left(\nabla \nabla \right) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}, \quad \Gamma = (x, y, z).$$

Для световой волны $v \not = c$ $A = \{ \vec{E} \circ \vec{D} \mid \vec{B} , \vec{H} \circ \vec{D} \}$ номерного случая

$$\frac{\partial^2 A(x,t)}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 A(x,t)}{\partial t^2} = 0$$

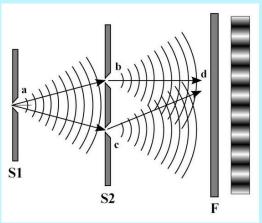
Легко проверить, что решение волнового уравнения есть:

$$A(x,t) = A_0 \cos(\omega t - kx + \delta) = A_1 \cos(\omega t - kx) + A_2 \sin(\omega t - kx),$$

где ω - частота волны, k - волновой вектор и $k = \frac{\omega}{c}$

В трех мерном случае: $A(r) = A_0 \cos(\omega t - kr + \delta)$ единичный п

вектор в направлении движении фронта волны


Воспользуемся формулой Эйлера: $e^{i \varphi} = \cos \varphi + i \sin \varphi$

Тогда, если
$$\varphi = \omega t$$
 то $kr + \delta$ $A(r,t) = \operatorname{Re}\left(A_1 e^{i(\omega t - kr)} + A_2 e^{-i(\omega t - kr)}\right)$

Экспоненты проще дифференцировать и умножать, поэтому работают с ними.

Обозначение **Re** убирают. Часто вводят: $kx = \omega t - kr$; тогда: $A(r,t) = A_1 e^{i(kx)} + A_2 e^{-i(kx)}$

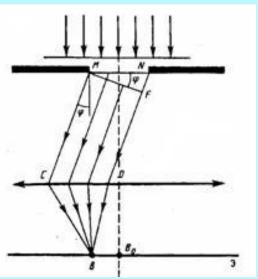
Свет как волна: опыт Томаса Юнга (1803)

Интерференция света от двух щелей – доказательство волновой природы света \rightarrow \rightarrow

природы света
$$\rightarrow$$
 \rightarrow $A_c(t) = A_0 e^{-i\omega t + ik_1 r_d + i\varphi}$, $A_c(t) = A_0 e^{-i\omega t + ik_2 r_d + i\varphi}$, $|A_0|^2 = I_0$, $|k_1| = |k_2| = k = \frac{\omega}{c} = \frac{2\pi}{\lambda}$ длина волны

Интенсивность света в точке **d**:

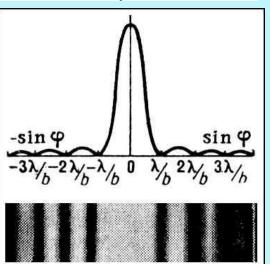
$$\begin{split} I &= \left| A_b + A_c \right|^2 = \left| A_b \right|^2 + \left| A_c \right|^2 + A_b^* A_c + A_b A_c^* = \\ &\left| A_0 \right|^2 + \left| A_0 \right|^2 + \left| A_0 \right|^2 \left(e^{i r_d \left(k_2 - k_1 \right)} + e^{-i r_d \left(k_2 - k_1 \right)} \right) = \\ &2 \left| A_0 \right|^2 \left[1 + \cos \left(r_d \left(k_2 - k_1 \right) \right) \right] = 2 \left| A_0 \right|^2 \left[1 + \cos \left(\frac{2\pi\Delta}{\lambda} \right) \right], \end{split}$$


 Δ -разность хода лучей по путям "**bd**" и "**cd**". **Таким образом:** $I=2I_0$ $1+\cos\left(\frac{2\pi\Delta}{\lambda}\right)$

Условие максимумов:

$$\frac{2\pi\Delta}{\lambda} = 2\pi n, \quad n = 0, \pm 1, \pm 2, \square \Rightarrow \Delta = n\lambda$$

Если свет –корпускула, то $I = \left|A_b\right|^2$ инин t_c ерференции быть не должно!!!


Свет как волна: дифракция Фраунгофера на щели (1821-1822 гг)

Дифракция света на щели – еще одно доказательство

$$dA = \frac{dx}{b} A_0 e^{-i\omega t + i kx \sin \varphi}$$

Дифракция света на щели – еще одно доказатели волновой природы света
$$dA = \frac{dx}{b} A_0 e^{-i\omega t + i \ kx \sin \varphi}$$
 Амплитуда в точке "В"
$$A_B = \int\limits_0^b dA \sim \frac{\sin\left(\frac{bk}{2}\sin\varphi\right)}{\frac{bk}{2}\sin\varphi}$$

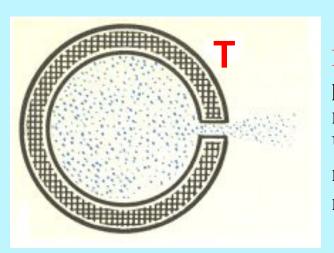
Интенсивность в точке "В"

точке "В"
$$I_B \sim \left|A_B\right|^2 \sim \frac{\sin^2\!\left(\frac{bk}{2}\!\sin\!\phi\right)}{\left(\frac{bk}{2}\!\sin\!\phi\right)^2}$$

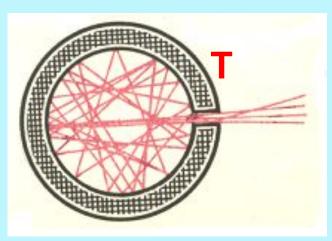
Условие максимумов: $\frac{bk}{2}\sin\varphi = n\pi$, $\varepsilon\partial e$ $n = \pm 1, \pm 2, \ldots$

 $n \neq 0$, чтобы знаменатель в формуле для $l_{\rm R}$ не равнялся нулю.

Масштаб квантовых явлений

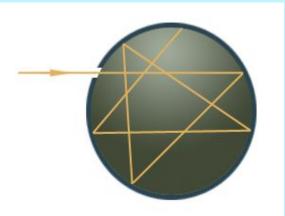

Начиная с масштабов ~10⁻⁶ – 10⁻⁸ см классическая физика перестаёт работать. В первой четверти XX-ого века это продемонстрировал ряд экспериментов:

- •спектр излучения абсолютно черного тела
- •фотоэффект
- •эффект Комптона
- •опыты Э.Резерфорда по исследованию структуры атомов
- •атомная спектроскопия
- •взаимные превращения микрочастиц и множество других эффектов. Микромир требует новых идей и нового математического аппарата:
- •Нерелятивистская квантовая механика
- •Квантовая теория поля


описывают микромир только при помощи наблюдаемых величин. В теории сочетаются взаимоисключающие, с точки зрения классической механики, макроскопические понятия.

9

Модель абсолютно черного тела (аналогия с идеальным газом)



Идеальный газ: атомы сталкиваются со стенками, и в результате устанавливается тепловое равновесие между газом и сосудом. Газ приобретает температуру стенок. Число атомов при столкновениях не меняется. Чтобы измерить температуру газа, можно выпустить небольшую часть атомов через маленькое отверстие.

Модель абсолютно черного тела: световые волны много раз отражаются от стенок, при этом они поглощаются излучаются вновь. стенками И результате устанавливается тепловое равновесие между излучением и стенками. В подобных процессах характеристики излучения полностью определяются температурой стенок. Свет, выходящий из маленького отверстия, проделанного в таком резервуаре, будет иметь энергетический спектр «абсолютно черного тела".

Спектр излучения абсолютно черного тела: общие формулы (1)

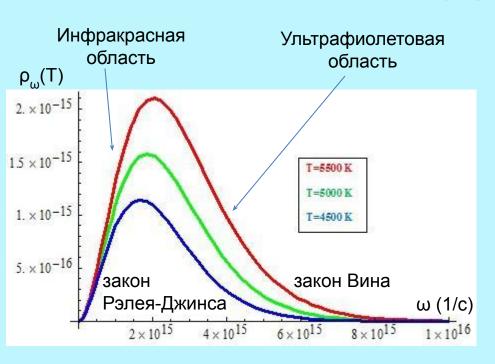
Задача: описать излучение в замкнутой полости, стенки которой находятся при фиксированной температуре T.

Энергия в единице объёма:
$$U = \int\limits_0^\infty \rho_\omega(T) d\omega$$

Величина энергии поля в единице объёма

Очевидно, что: $\rho_{\omega}(T)d\omega=\langle \varepsilon_{\omega}^{\mathrm{B}}(T)\rangle dn_{\omega}$

 $\langle arepsilon_{\omega}(T)
angle$ - средняя энергия полевой моды (колебания) с частотой $oldsymbol{\omega}$ dn_{ω}^{-} - число полевых мод (колебаний) в интервале частот от ω до ω + $d\omega$


Согласно закону Больцмана, вероятность обнаружить колебание с энергией $\varepsilon_{_{\alpha}}$:

$$w(\varepsilon_{\omega},T) = Ne^{-\varepsilon_{\omega}/kT}$$

В классическом случае:

$$\langle \varepsilon_{\omega}(T) \rangle = \frac{\int \varepsilon_{\omega} w(\varepsilon_{\omega}, T) d\varepsilon_{\omega}}{\int w(\varepsilon_{\omega}, T) d\varepsilon_{\omega}} = kT$$

Спектр излучения абсолютно черного тела: общие формулы (2)

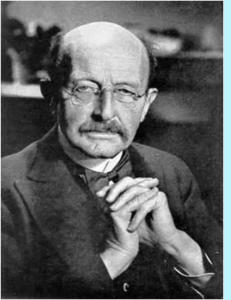
Число колебаний в интервале от ω до ω + $d\omega$:

$$dn_{\omega} = \frac{\omega^2 d\omega}{\pi^2 c^3}$$

Эта задача будет разобрана на семинаре Из размерностей:

$$\begin{bmatrix} dk \end{bmatrix} = \begin{bmatrix} dk_x & dk_y & dk_z \end{bmatrix} = \frac{1}{l^3} \Rightarrow$$

$$dn_\omega \sim dk \sim k^2 dk = \frac{1}{c^3} \omega^2 d\omega$$
Но множитель $\frac{1}{\pi^2}$ воспроизвести не просто!!!


Тогда:
$$\rho_{\omega}(T) = \frac{kT}{\sqrt{2}c^3}$$
 Элея-Джинса. Энергия в единице объёма:

Закон Вина: анализ экспериментальных данных в ультрафиолетовой области (большие ω) привёл В.Вина в 1896 году к следующей **эмпирической** формуле для $\rho_{\omega}(T)$

$$U \sim \int_{0}^{\infty} \omega^{2} d\omega \to \infty$$

() - "ультрафиолетовая катастрофа"

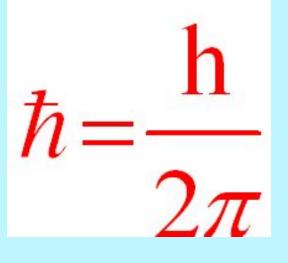
$$\rho_{\omega}(T) \sim -\exp(-const\omega/kT)$$

Спектр излучения абсолютно черного тела: формула Планка

Гипотеза М.Планка: для каждого колебания существует минимальное значение энергии (квант энергии) $\boldsymbol{\mathcal{E}}_{\omega}^{(0)}$

Тогда каждое колебание содержит 0, 1, 2, K, ... -квантов энергии. Вероятность для K квантов задается формулой Больцмана. Тогда:

$$\langle \varepsilon_{\omega} \rangle = \frac{\sum_{n=0}^{\infty} (n\varepsilon_{\omega}^{(0)}) \cdot w(n\varepsilon_{\omega}^{(0)}, T)}{\sum_{n=0}^{\infty} w(n\varepsilon_{\omega}^{(0)}, T)} = \frac{\varepsilon_{\omega}^{(0)}}{\exp\left(\frac{\varepsilon_{\omega}^{(0)}}{kT}\right) - 1}$$


В пределе больших энергий
$$\left({m{arepsilon}_{\omega}^{(0)}}>> {m{k}}T \right) \left\langle {m{arepsilon}_{\omega}} \right
angle \sim -\exp \left({m{arepsilon}_{\omega}^{(0)}}/{kT} \right) \Rightarrow
ho_{\omega}(T) \sim -\exp \left({m{arepsilon}_{\omega}^{(0)}}/{kT} \right)$$

По закону Вина $\mathcal{E}_{\omega}^{(0)} \sim \omega$. М.Планк предположил универсальность этой пропорциональности для любых энергий :

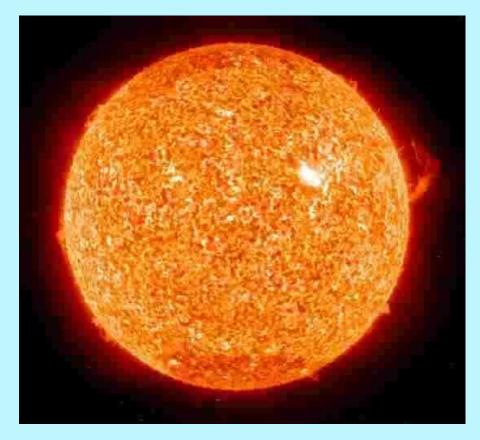
$$\varepsilon_{\omega}^{(0)} = \hbar \alpha$$

Постоянная Планка

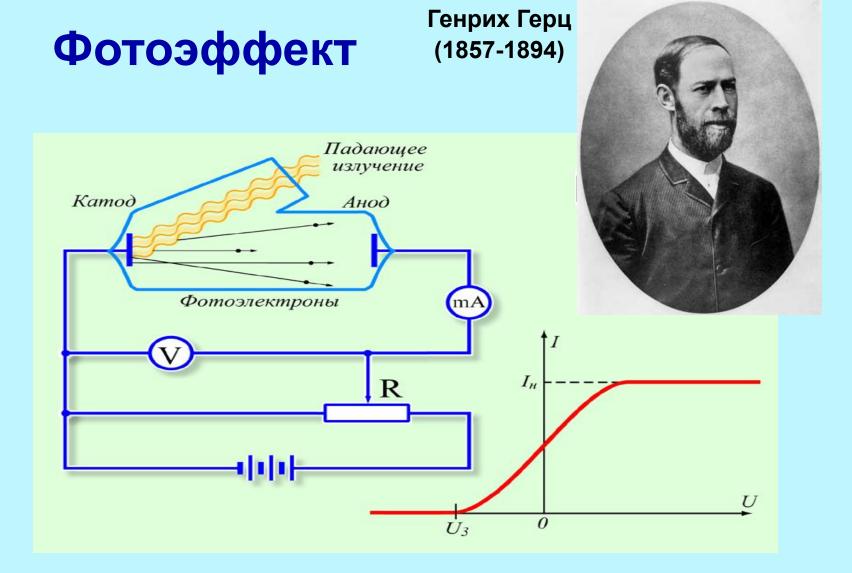
пьзуется «перечеркнутая» постоянная Планка:

Д
$$\pi$$
-с1,054 571 726(47)×10⁻³⁴

$$\mathfrak{pre}$$
, 054 571 726(47) $\times 10^{-27}$


эВ
$$\pi$$
6,582 119 28(15) \times 10⁻¹⁶

$$\varepsilon_{\omega}^{(0)} = \hbar \omega$$


М.Планк не вкладывал в это выражение никакого физического смысла, полагая его математической абстракцией, которая позволяет получить правильную формулу для спектра энергии абсолютно черного тела.

Солнце как абсолютно черное тело

Абсолютно черное тело может быть совсем не черным, а даже очень ярким. По одному из определений абсолютно черное тело — это тело, которое поглощает все падающее на его поверхность излучение. Но, поскольку, такое тело не может бесконечно нагреваться, то оно начинает ИЗЛУЧАТЬ. Согласно закону сохранения энергии в состоянии термодинамического равновесия абсолютно черное тело излучает ровно столько энергии, сколько и поглощает.

Характерным примером ЯРКОГО абсолютно черного тела является фотосфера (видимая поверхность) нашего Солнца, которая излучает энергию как абсолютно черное тело с Т ~ 6000° К. Максимум излучения приходится на длину волны λ ≈ 550 нм.

В 1887 г., изучая явление электрического пробоя газового промежутка, Герц обнаружил, что освещение ультрафиолетовым светом отрицательного электрода искрового промежутка, находящегося под напряжением, облегчает проскакивание искры между электродами.

Сущность фотоэффекта

Процесс вырывания электронов из вещества под действием излучения получил название фотоэлектрического эффекта или, сокращенно, фотоэффекта. В результате фотоэффекта изначально нейтральное тело под действием излучения приобретает положительный заряд.

Фотоэлектрическими свойствами обладают металлы, диэлектрики, полупроводники и электролиты.

Чаще всего фотоэффект наблюдается при облучении образцов ультрафиолетовыми лучами. Причина этого станет понятна чуть позже. Именно такой тип фотоэффекта наблюдал Г.Герц. Однако, ряд щелочных металлов (литий, натрий, калий, рубидий и цезий) чувствительны к фотоэффекту от излучения в видимой части спектра.

В лекциях мы будем строить теорию ВНЕШНЕГО фотоэффекта, когда электроны высвобождаются из поверхностного слоя образца и переходят в вакуум. Эта теория важна для экспериментального обоснования корпускулярных свойств света.

Классическая теория фотоэффекта

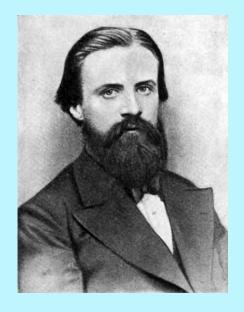
С точки зрения классической теории, надо рассматривать колебания электрона в поле монохроматической волны:

 $mr = eE \cos(\omega t - |k|z)$

Если в начальный момент времени электрон покоился, то максимальная кинетическая энергия электрона:

$$E_{\text{max}} = \frac{\overrightarrow{mr^2}}{2} \sim |\overrightarrow{E}|^2 \sim I$$

то есть должна быть прямо пропорциональна интенсивности излучения / и не зависеть от частоты. Это значит, что при любой частоте пучок света высокой интенсивности должен выбивать фотоэлектроны.


Эксперименты ПРОТИВОРЕЧЯТ предсказаниям классической теории! 19

Закономерности фотоэффекта

Р.Э.Милликен А. Г. Столетов (1886-1953)

(1839-1896)

- Число высвобождаемых электронов прямо пропорционально интенсивности падающего света.
- Максимальная кинетическая энергия электронов $m{E}$ зависит от частоты о и не зависит от интенсивности падающего света.
- Энергия электронов $m{E}$ является линейной функцией частоты падающего света ...
- Существует граничная частота света которой фотоэффект невозможен (красная граница фотоэффекта)

20

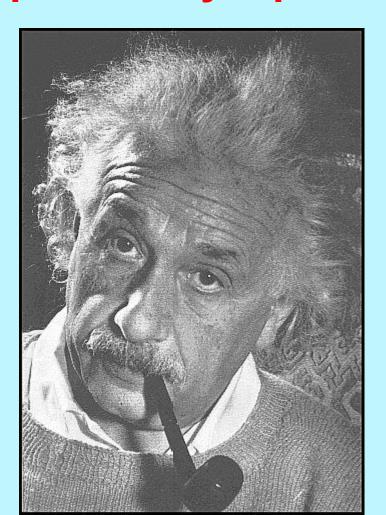
1905. Фотоэффект

Объяснение явления фотоэффекта дал Эйнштейн. Согласно Эйнштейну электромагнитное излучение состоит из квантов, названных позднее фотонами. Каждый фотон имеет определенную энергию

А.Эйнштейн (1879-1955)

$$\mathcal{E}_{\omega}^{(0)} = \square \omega$$
 — частота фотона.

W


E — кинетическая энергия электрона, ω — частота света, падающего на мишень, W — работа выхода электрона из металла. На основе этого соотношения легко описать все наблюдаемые особенности фотоэффекта

Нобелевская премия по физике

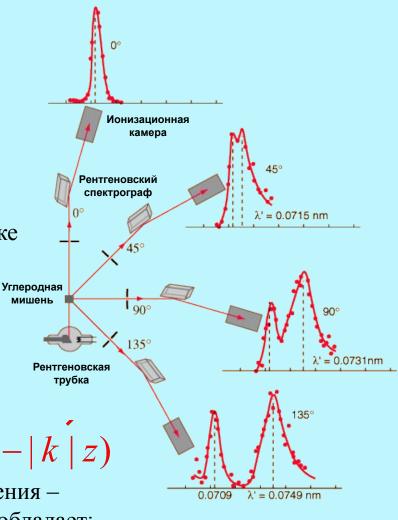
1921 г. – А. Эйнштейн

За вклад в теоретическую физику и в особенности за открытие закона фотоэлектрического эффекта. 21

Благодаря формуле Эйнштейна для фотоэффекта квант света превратился из математической абстракции Макса Планка в физическую реальность.

$8\lambda = \frac{h}{mc} (versog)$

А.Комптон (1892-1962)


В классической физике взаимодействие электрона с монохроматической волной описывается уравнением вынуж-денных колебаний:

 $mr = eE\cos(\omega t - |k|z)$

Решение этого уравнения – **рассеянная волна** – обладает:

$$\lambda' = \lambda$$

Квант света как физическая реальность: эффект Комптона (1)

Комптон изучал рассеяние жесткого рентгеновского излучения с длиной волны λ на образцах, состоящих из легких атомов (графит, парафин и т.д.).

Он нашел, что рассеянное излучение помимо волн с λ содержит волны с $\lambda' > \lambda$. Разность $\lambda' - \lambda$ не зависит от материала и λ , но зависит от угла θ , под которым ведется измерения. Эта зависимость выражается формулой:

$$\lambda' - \lambda \sim 1 - \cos \theta$$

Данное явление называется **эффектом Комптона**.

Квант света как физическая реальность: эффект Комптона (2)

Классическая физика:

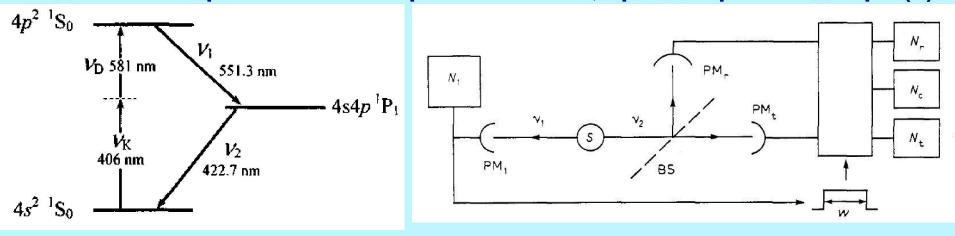
$$\lambda' = \lambda$$

Эксперимент (эффект Комптона): $\lambda' - \lambda \sim 1 - \cos \theta$

Эффект можно объяснить, если предположить, что фотон – это частица с $arepsilon = igcap \omega$

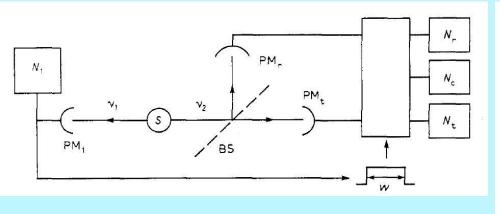
$$\begin{cases} \Box \boldsymbol{\omega} + m_{\overline{e}}c^2 = \Box \boldsymbol{\omega}' + E \\ \Box k = \Box k' + p_e \end{cases}$$

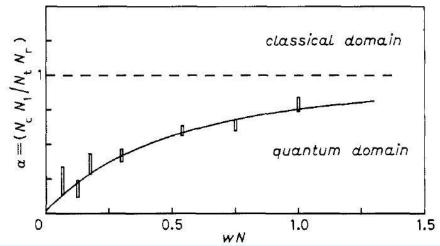
Напомним, что


$$E_e^2 = p_e^2 c^2 + m_e^2 c^4 \qquad |\vec{k}| = \frac{2\pi}{\lambda} = \frac{\omega}{c} \qquad |\vec{k}'| = \frac{2\pi}{\lambda'} = \frac{\omega'}{c}$$

$$\begin{cases} \Box(\omega-\omega')+m_ec^2=E_e\\ \Box(k-k')=D_e \end{cases} \Rightarrow \text{Возводим} \begin{cases} \Box^2(\omega-\omega')^2+2m_ec^2\Box(\omega-\omega')+m_e^2c^4=E_e\\ \Box^2\omega^2+\Box^2\omega'^2-2\Box^2\omega\omega'\cos\theta=c^2D_e^2 \end{cases}$$
 Вычитаем второе равенство из первого:

Комптоновская длина волны электрона


Комптоновская длина волны электрона
$$\lambda_k = \frac{2\pi\hbar}{m_e c} = \frac{h}{m_e c} \approx 2.426 \ 10^{-10} cm$$
И в терминах $\lambda' - \lambda = \frac{2\pi\hbar}{m_e c} (1 - \cos\theta) \equiv \lambda_k (1 - \cos\theta)$


Квант света как физическая реальность: одиночные фотоны в эксперименте Аспе, Гренджера и Роджера (1)

В опытах А. Аспе, П.Гренджера и Д.Роджера использовался источник одиночных фотонов на основе возбуждённых состояний атома Са. Переход с возбужденного *s*-уровня на промежуточный *p*-уровень $(4p^2 \ ^1S_0 - \text{Сопровождается} \text{ излучением фотона с } v_1 = \mathfrak{S} + \mathfrak{T} \mathfrak{S} + \mathfrak{S}$

Квант света как физическая реальность: одиночные фотоны в эксперименте Аспе, Гренджера и Роджера (2)

 N_{t} и N_{r} – число одиночных отсчетов детекторов PM_{r} и PM_{t} соответственно, N_{c} – число совпадений, когда оба детектора срабатывают за время \mathcal{W} . $N_{\scriptscriptstyle 1}$ - число возможностей срабатывания каждого из детекторов за время эксперимента (Т).

Вероятности:
$$P_t = \frac{N_t}{N_1}, \quad P_r = \frac{N_r}{N_1} \quad u \quad P_c = \frac{N_c}{N_1}.$$

Антикорреляционный параметр:

$$A = \frac{P_c}{P_t P_r} = \frac{N_c N_1}{N_t N_r} \to 0,$$
 - если фотон это частица, а интенсивность света **j** не большая

 \rightarrow 1, - интенсивность света **j** большая

Экспериментальные данные подтверждают ЭТО

Алан Аспе (р. 1947)

Это должен знать каждый ФНМэшник с середины февраля:

$$\hbar = 8458 \cdot 160^{-22}$$
 · 1 эВ = 1,602 · 10⁻¹⁹ Дж = 1,602 · 10⁻¹² эрг.

В СГС скорость света в вакууме

$$C = 3 \cdot 10^{10}$$
 cm/c a He 1!!!