Тема. Колебания линейных распределенных систем

Семинар 11. Изгибные колебания стержня

В технической теории изгибные колебания стержня описывают уравнением при p=0

$$\frac{\partial^2}{\partial x^2} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) + \frac{\partial}{\partial t} \left(\rho F \frac{\partial w}{\partial t} \right) = 0 \quad (10.1)$$

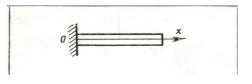
Если стержень имеет постоянные по длине характеристики EJ = const, pF = const, то уравнение для исследования собственных колебаний будет следующим:

$$\frac{\partial^4 w}{\partial x^4} + \frac{\rho F}{EJ} \frac{\partial^2 w}{\partial t^2} = 0 \quad (10.2)$$

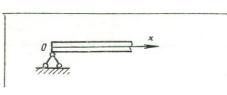
Функция w(x, t) на концах стержня должна удовлетворять краевым условиям, соответствующим характеру закрепления концов стержня.

Основные типы краевых условий для изгибных колебаний стержней

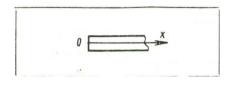
1.
$$w = 0$$
, $\frac{\partial w}{\partial x} = 0$



2.
$$w = 0$$
, $EJ\frac{\partial^2 w}{\partial x^2} = 0$

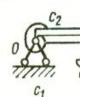


3.
$$\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) = 0, \quad EJ \frac{\partial^2 w}{\partial x^2} = 0$$



$$4. \frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) - c_1 w = 0, \quad EJ \frac{\partial^2 w}{\partial x^2} = 0$$

5.
$$w = 0$$
, $EJ \frac{\partial^2 w}{\partial x^2} - c_2 \frac{\partial w}{\partial x} = 0$

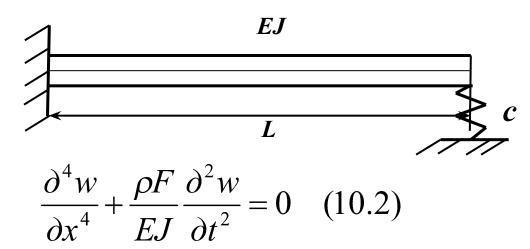


6. Основные типы краевых условий для изгибных колебаний стержней

Вид закрепления	Схема	Условия при х = 0
Заделка	0	$w=0, \ \frac{\partial w}{\partial x}=0$
Свободное опирание	*	$\omega = 0$, $E J \frac{\partial^2 \omega}{\partial x^2} = 0$
Свободный конец	0 - 3	$\left \frac{\partial}{\partial x} \left\langle EJ \frac{\partial^2 w}{\partial x^2} \right\rangle = 0, EJ \frac{\partial^2 w}{\partial x^2} = 0$
Плавающая заделка	0 1111	$\frac{\partial}{\partial x} \left(E J \frac{\partial^2 w}{\partial x^2} \right) = 0, \frac{\partial w}{\partial x} = 0$
	**************************************	$ \frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) - c_1 w = 0, $ $ \frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) + c_1 w = 0, $ $ (\text{при } x = l) $
пругое закреп-		$E \int \frac{\partial^3 w}{\partial x^2} - c_2 \frac{\partial w}{\partial x} = 0.$ $w = 0, E \int \frac{\partial^3 w}{\partial x^2} + c_2 \frac{\partial w}{\partial x} = 0$ $(\pi p_H \ x = l)$
initis oxide de	O TO	$\frac{\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) - c_1 w = 0,}{\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) + c_1 w = 0,} EJ \frac{\partial^2 w}{\partial x^2} = 0$ $(\text{при } x = l)$

Вид закрепления	Схема	Условия при х = 0
	X X X X X X X X X X X X X X X X X X X	$EJ\frac{\partial^{z}w}{\partial x^{2}} - c_{z}\frac{\partial w}{\partial x} =$ $\frac{\partial}{\partial x}\left(EJ\frac{\partial^{z}w}{\partial x^{2}}\right) = 0,$ $EJ\frac{\partial^{z}w}{\partial x^{2}} + c_{z}\frac{\partial w}{\partial x} =$ $(npw \ x = l)$
Упругое закреплевне		$\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) - \varepsilon_1 w = 0,$ $EJ \frac{\partial^2 w}{\partial x^2} - \varepsilon_2 \frac{\partial w}{\partial x} =$ $\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) + c_1 w = 0,$ $(\text{при } x = l)$ $EJ \frac{\partial^2 w}{\partial x^2} + c_2 \frac{\partial w}{\partial x} =$ $(\text{при } x = l)$
Сосредоточенный нерционный эле- мент на конце	m, I	$\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) = m \frac{\partial^2 w}{\partial t^2}$ $EJ \frac{\partial^2 w}{\partial x^2} = I \frac{\partial^2 w}{\partial x \partial t}$ $\frac{\partial}{\partial x} \left(EJ \frac{\partial^2 w}{\partial x^2} \right) = -m \frac{\partial^2 w}{\partial t^2}$ (npa $x = I$) $EJ \frac{\partial^2 w}{\partial x^2} = -I \frac{\partial^2 w}{\partial x \partial t}$ (npa $x = I$)

Пример 1. Определить собственную частоты и формы изгибных колебаний стержня



Начальные условия для определения собственных частот всегда нулевые Решение уравнения имеет вид

$$w(x,t) = W(x)\sin \omega t \quad (10.3)$$

Подстановка (10.3) в (10.2) приводит к уравнению

$$W^{IV} - \beta^4 W = 0$$
 (10.3)

Граничные условия при x = 0 u x = L для W(x)

$$W(0) = 0;$$
 $W'(0) = 0;$ $W''(L) = 0;$ $W'''(L) = -\frac{c}{EJ}W(L);$ (10.13)

$$W(0) = 0;$$
 $W'(0) = 0;$ $W''(L) = 0;$ $W'''(L) = -\frac{c}{EJ}W(L)$ (10.13)

Общее решение в виде

$$W(x) = W(0)S_1(\beta x) + \frac{W'(0)}{\beta}S_2(\beta x) + \frac{W''(0)}{\beta^2}S_3(\beta x) + \frac{W'''(0)}{\beta^3}S_4(\beta x)$$
 (10.10)

Два первых условия (10.13) дают

$$W(x) = C_3 S_3(\beta x) + C_4 S_4(\beta x)$$
 (10.14)

Производные

$$W''(x) = C_3 \beta^2 S_1(\beta x) + C_4 \beta^2 S_2(\beta x);$$

$$W'''(x) = C_3 \beta^3 S_4(\beta x) + C_4 \beta^3 S_1(\beta x)$$

Подстановка (10.14) в последние два условия (10.13)

$$C_3 S_1(\beta L) + C_4 S_2(\beta L) = 0$$
 (10.15)

$$C_3[\beta^3 S_4(\beta L) + \frac{c}{EJ}S_3(\beta L)] + C_4[\beta^3 S_1(\beta L) + \frac{c}{EJ}S_4(\beta L)] = 0$$

$$C_3S_1(\beta L) + C_4^2S_2(\beta L) = 0$$
 (10.15)

$$C_3[\beta^3 S_4(\beta L) + \frac{c}{EJ}S_3(\beta L)] + C_4[\beta^3 S_1(\beta x) + \frac{c}{EJ}S_4(\beta L)] = 0$$

Условием ненулевого решения является равенство нулю определителя

$$\begin{vmatrix} S_1(\beta L) & S_2(\beta L) \\ S_4(\beta L) + \frac{c}{EJ\beta^3} S_3(\beta L) & S_1(\beta L) + \frac{c}{EJ\beta^3} S_4(\beta L) \end{vmatrix} = 0 \quad (10.16)$$

ИЛИ

$$S_{1}^{2}(\beta L) - S_{2}(\beta L) S_{4}(\beta L) + \frac{c}{EJ\beta^{3}} [S_{1}(\beta L) S_{4}(\beta L) - S_{2}(\beta L) S_{3}(\beta L)] = 0 \quad (10.17)$$

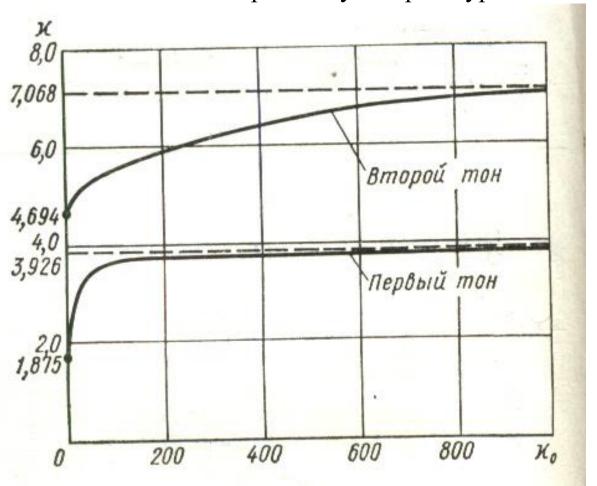
$$S_{1}^{2}(\chi) - S_{2}(\chi) S_{4}(\chi) + \frac{\chi_{0}^{3}}{\chi^{3}} [S_{1}(\chi) S_{4}(\chi) - S_{2}(\chi) S_{3}(\chi)] = 0 \quad (10.17a)$$

$$\varepsilon \partial e \quad \chi = \beta L; \quad \chi_{0}^{3} = \frac{cL^{3}}{EJ} \quad (10.18)$$

Используя выражения для функций Крылова (10.9), получим следующее уравнение частот:

$$1 - ch\chi \cos \chi + \frac{\chi_0^3}{\chi^3} [sh\chi \cos \chi - ch\chi \sin \chi] = 0 \quad (10.19)$$

На рис. 2. показана зависимость первых двух корней уравнения (10.19) от χ_0



$$1 - ch\chi \cos \chi + \frac{\chi_0^3}{\chi^3} (sh\chi \cos \chi - ch\chi \sin \chi) = 0 \quad (10.19)$$

Если $\chi = \chi_k \ k = 1, 2, 3...$ - корень уравнения (10.19), то собственная частота

$$\omega_k = \frac{\chi_k^2}{L^2} \sqrt{\frac{EJ}{\rho F}} \quad (10.20)$$

Форма колебаний определяется функцией

$$W_{k}(x) = S_{3}(\chi_{k} \frac{x}{L}) - \frac{S_{1}(\chi_{k})}{S_{2}(\chi_{k})} S_{4}(\chi_{k} \frac{x}{L}) \quad (10.21)$$

Балочные функции. Собственные формы изгибных колебаний стержней с постоянными по длине характеристиками для различных краевых условий называют балочными функциями.

Так, формула 10.21) определяет балочную функцию для стержня с одним заделанным и другим опертым на линейную пружину концом.