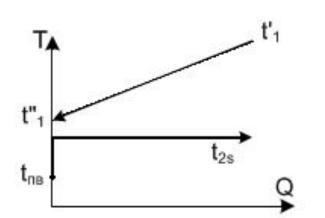
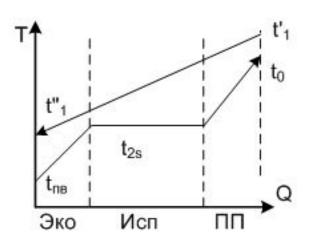
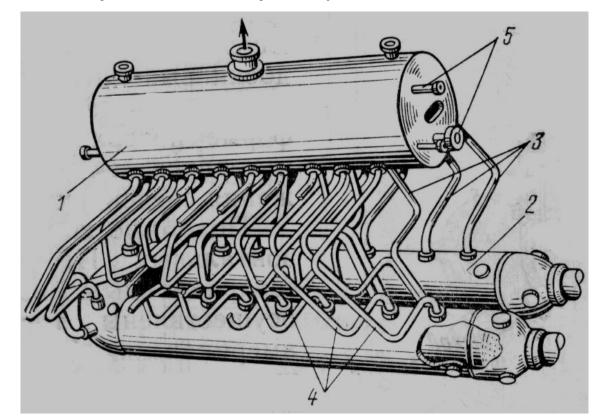
План лекции Конструкционные схемы и параметры ПГ с различными теплоносителями

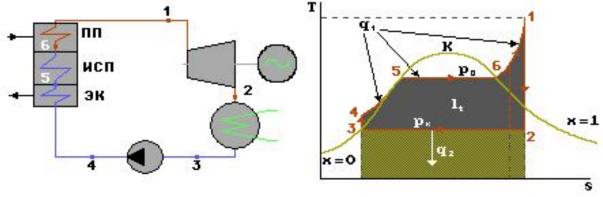

- Конструкционные схемы
- Особенности схем с водным теплоносителем
 - Параметры пара ПГ, обогреваемых водой под давлением
- Конструкционные схемы ПГ с жидкометаллическим теплоносителем
 - Параметры пара ПГ, обогреваемых жидкими металлами
- Конструкционные схемы ПГ с газообразными теплоносителем
 - Параметры пара ПГ, обогреваемых газообразными теплоносителями


Конструкционные схемы ПГ

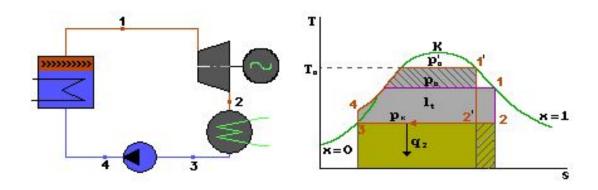
- ПГ АЭС выполняются с поверхностью нагрева в виде трубной системы.
- Способ омывания поверхности нагрева :
 - среду с большим давлением из соображений прочности и экономичности – направлять в каналы с меньшим эквивалентным диаметром, соблюдая принцип противотока
 - в МТП более вязкую среду (например, газы)
 - по трубкам среду, вызывающую более интенсивную коррозию
- Форма поверхности из условий компактности и минимума температурных напряжений
 - применение компенсаторов, самокомпенсация трубок, материалов с одинаковым КТР, разделение трубных досок и др.

Конструкционные схемы ПГ


- Компоновка элементов ПГ:
 - пароперегреватель отдельно
 - ЭКО и испаритель совместно или раздельно
- Отдельный ЭКО имеет малую F_{пто} (тепловые потоки малы, интенсивность т/о высокая). Выполняется по простой схеме
- При объединении ЭКО и испарителя 2 варианта:
 - поверхность т/о эко обособлена и имеет собственный кожух, ликвидация собств. т/о поверхности
 - общая поверхность ничем не разделена, обогрев водой с t_{2s} , Подогрев пит. воды до t_{2s} идет за счет конденсации части образующегося пара. Вариант возможен при условии $t_1'' > t_{2s}$.
- Отдельный ЭКО обязателен при $t''_1 < t_{2s}$

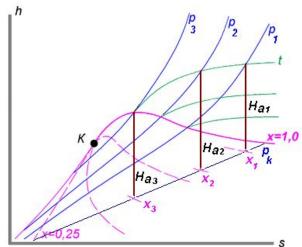

Конструкционные схемы ПГ

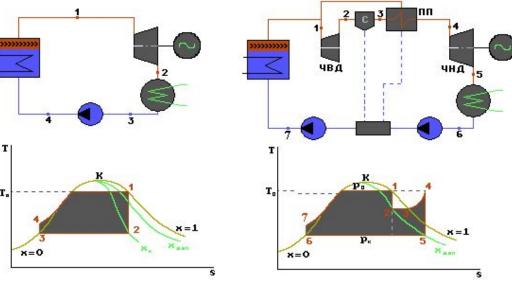
- Вид циркуляции рабочего тела любой
- Для ПГ с погруженной поверхность т/о единственный вариант естественная циркуляция с парообразованием в МТП. Кипение по законам для большого объёма – естественная конвекция.
- Сепарация пара в отдельном корпусе или совместная
- Сепарация осуществляется за счет естественной гравитации или принудительной (механической) сепарации



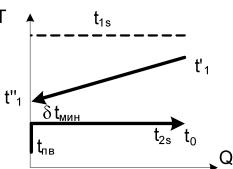
Влияние параметров пара на экономичность

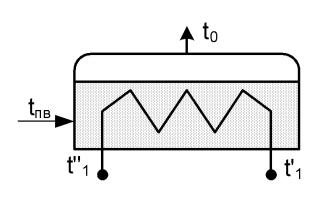
- С ростом T_0 и P_0 экономичность цикла растет: КПД = $(T_0 T_K)/T_0$
- Для перегретого пара рост Т возможен при постоянном Р. И всегда ведет к росту КПД
- Ограничение по жаропрочности материалов (545-555°C)

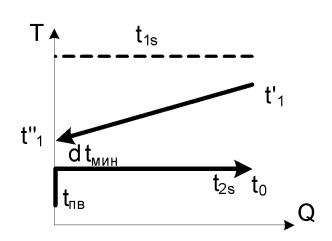



Для насыщенного пара рост Т связан с ростом Р
 И влияние давления на КПД неоднозначно: (рост до 165 бар)

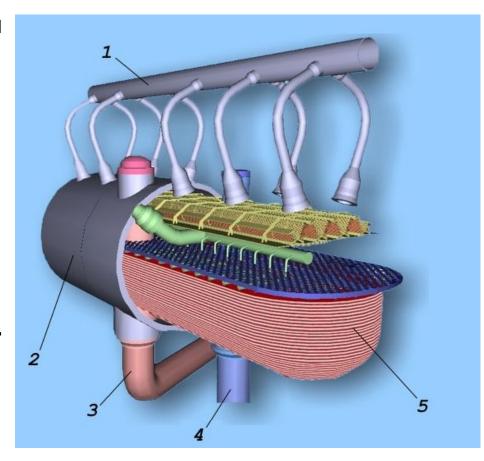
Влияние параметров пара на экономичность


- Влияние начального давления неоднозначно даже для перегретого пара. При одной и той же T_{o} с ростом P_{o} полезный теплоперепад сначала растет, потом снижается. КПД= H_{a}/Q_{1}
- Тепловая экономичность зависит не только от термического КПД, но и от КПД, оценивающих потери в других устройствах.
- С ростом Р_о увеличивается конечная влажность пара и снижается внутренний относительный КПД
- $x_{KD} = 14\%$
- Необходим ввод в схему промежуточной сепарации и перегрева пара

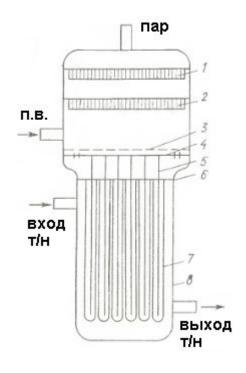

Параметры пара ПГ, обогреваемых водой под давлением

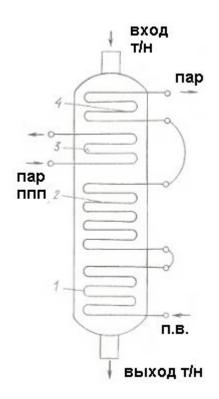

- Температура теплоносителя на выходе из реактора должна быть ниже t_{1s} (при p_1) на величину, гарантирующую исключение парообразования в реакторе. Запас до кипения 20-40°C
- для воды t_{кр} = 374,12°C (22,13 МПа)
- давление в 1 контуре для ВВЭР не выше 17 МПа (352°С), значит с учетом запаса до кипения, максимальная $t'_1 = 330$ °С
- для увеличения параметров пара необходимо иметь в ПГ минимально возможный темп. напор ($\delta t_{\text{мин}}$). В то же время низкий напор ведет к росту поверхности $F = Q/(k \ \delta t)$.
- По технико-экономическим обоснованиям δt_{мин}=10-20°C
- Поверхность теплообмена большая многопетлевая компоновка
- Макс. давление пара (и t_{2s}) зависит не только от $\delta t_{\text{мин}}$, но и от $t_{1\text{исп}}$. Наибольшее значение её возможно при малом Δt_1 .
- Ho Q = $G_1 \cdot C_p \cdot \Delta t_1$ уменьшение Δt_1 ведет к росту G_{1_T}
- Πο т/э расчетам Δt₁=30-35°C
- В итоге: макс. $t_{2s} = 330 30 10 = 290$ °C,
- а максимальное давление пара $= 7-7,5 \ \text{М}$ Па
- Пар насыщенный или слабо перегретый
- Все ПГ с ВВЭР производят насыщенный пар 6,5 МПа

Особенности конструкционных схем ПГ с водой под давлением

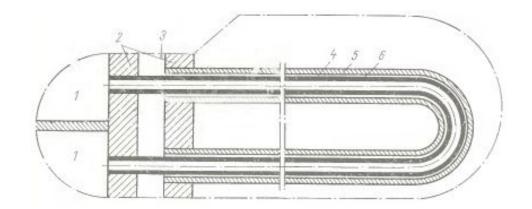

- При максимальных давлениях пара перегрев пара не м.б. больше 30°С.
 Больший перегрев возможен только при снижении давления пара
- Малый перегрев не дает большого выигрыша в КПД, но значительно усложняет конструкцию ПГ.
- Из-за низкого значения Δt_1 введение экономайзера не даст большого роста \mathbf{t}_{2s} и давления, но усложнит конструкцию ПГ, увеличит его габариты.
- Поэтому в тепловой схеме ПГ есть только испаритель. Подогрев п.в. до $\mathsf{t}_{_{\mathrm{S}}}$ идет за счет конденсации части образующегося пара.
- $P_1 >> P_2$, поэтому теплоноситель в трубках, рабочее тело в МТП.
- Hauболе удобен вариант с погруженной F_{пто} и внутренней сепарацией.

Особенности конструкционных схем ПГ с водой под давлением

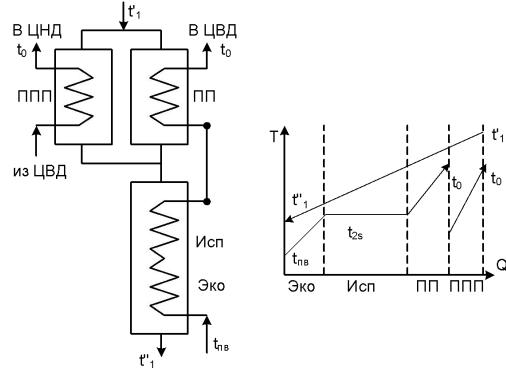

- В России применяются горизонтальные ПГ с внутренними коллекторами.
- За рубежом вертикальные ПГ с погруженной поверхностью ТО и трубными досками.
- Горизонтальные ПГ имеют предел единичной мощности.
- Применение трубок меньшей толщины повысит интенсивность ТО, уменьшить температурный напор и увеличить давление пара.
- Применение выделенного ЭКО позволит увеличить тепловую мощность ПГ (проект для ПГВ-1600)

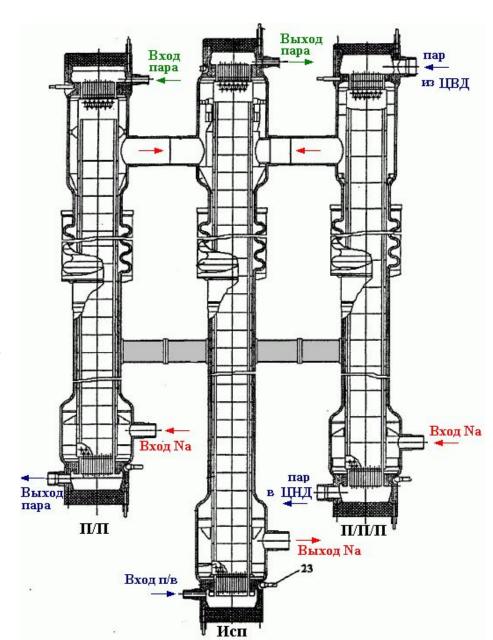


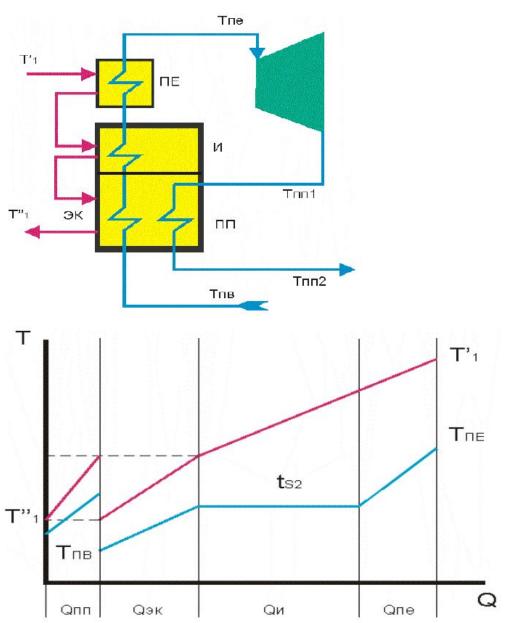
Параметры пара ПГ, обогреваемых жидкими металлами


- Высокотемпературный т/носитель, максимальная Т на выходе из реактора (550-600°С) определяется
 - необходимостью обеспечения надежной работы оболочек твэл при 600-800°C
 - и получением пара высоких параметров
- Из-за низкой Ср для уменьшения $G_1 -> \Box \Delta t_1 (Q = G_1 Cp \Delta t_1)$.
- $\Delta t_1 = 150\text{-}200$ °C. На блоке БН-600 $\Delta t_1 = 170$ и 200°C (1 контур: 550 380, пром. контур: 520 320°C)
- Дополнительный контур и пром. теплообменник снижают параметры пара, поэтому стремятся уменьшить температурный напор (до 10-20°С)
- ПГ на ж/м т/н вырабатывают перегретый пар с параметрами 13-16 МПа и 500 − 510°С
- Выработка пара СКД проблематична проблема металлов, работающих одновременно с жидким металлом и при высоких давлениях

- Охлаждение теплоносителя большое, t'₁ высокая ПП всегда
- если $t''_1 < t_{2s}$ обязателен отдельный ЭКО, иначе м.б. совмещен с ИСП
- $P_{_{\text{т/н}}}$ много меньше $P_{_{\text{р.т}}}$: водотрубная конструкция (вода по трубкам) это позволяет выполнить любую компоновку элементов.
- Водотрубная конструкция позволяет использовать любую схему организации движения р.т. (от ЕЦ до прямоточной - предпочтительнее)




- Высокие температуры и высокие коэф-ты теплоотдачи усложняют проблему температурных напряжений. Первые ПГ выполнялись с обратными элементами (трубками Фильда) или змеевиковыми поверхностями.
- Для контроля утечек многослойные трубки с индикаторами протечек. Кольцевой зазор (4) соединен с камерой индикатора протечек (3). В зазоре индикатор – ртуть или гелий (вещество с хорошими теплопроводными свойствами). При аварии изменяется давление или хим. состав.
- За период эксплуатации БН-600 было 27 аварий с потерей плотности.
 Все без последствий.



- БН-350 и БОР-60 двухкорпусные, в первом корпусе ЭКО и испаритель, во втором – ПП. Трубки – змеевиковые.
- ПГ для БН-350 с естественной циркуляцией, ПГ для БН-600 по прямоточной схеме.
- ПГ для БН-600 по секционно-модульной компоновке (ПГ-200М). Возможность ремонта и замены секций.
- В каждом ПГ 8 параллельно включенных секций. В каждой секции 3 модуля: испаритель, ПП и ППП. Объединены по натрию, пару и воде. Каждая секция – прямоточный ПГ.

- Модули вертикальные теплообменники с прямыми трубками. Трубки испарителя и п/п имеют диаметр 16 x 2.5 мм, а п/п/п-25 x 2.5 мм.
- Испаритель ПГ сделан из стали 10Х2М, а пароперегреватели – из аустенитной хромоникелевой стали.
- Компенсация температурных удлинений корпуса – с помощью линзовых компенсаторов.
- Длина модуля составляет 16 метров (при длине трубок – 15 м), диаметр – около 820 мм.
- Пит. вода входит с t=240°C.
- На выходе из испарителя слабоперегретый пар (на 20-25°С)
- На выходе из ПП − пар с t=505 °C
- Конструкция ПГ для БН-800 похожа, но без П/П/П – для повышения надёжности.

Параметры пара ПГ, обогреваемых газообразными теплоносителями

- Газовые теплоносители высокотемпературные
- t'₁ зависит от вида топлива (природный или обогащенный уран), материала покрытия твэлов (магниевый сплав, сталь) и рабочего давления газа
 - природный уран и оболочка твэлов с покрытием из магниевых сплавов дают температуру на поверхности твэлов 420 450°С. Если теплоноситель углекислый газ с Р до 2,0 МПа, то $t'_1 = 350-400$ °С. 1 поколение АЭС
 - обогащенное топливо в виде двуокиси урана, стальные оболочки и давление до 5 МПа позволяют иметь $\mathbf{t'}_1 = 550\text{-}600$ °C при \mathbf{t} оболочек до 800° C второе поколение АЭС
 - переход на гелий при этих условиях позволит иметь $t'_1 = 700$ °C и выше
 - применение гелия более высокого давления и кермитов t¹₁ до 850 °C
- Из-за низких ТФС очень большие расходы теплоносителя, поэтому выгодно иметь большие теплоперепады 200-400°С
- Высокая t теплоносителя позволяет иметь любые параметры пара
- Для АЭС первого поколения перегретый пар с Р-4-6МПа и t до 410°С.
 Применялись схемы двух давлений
- АЭС второго поколения перегретый пар с Р=16,3 МПа и 565°С

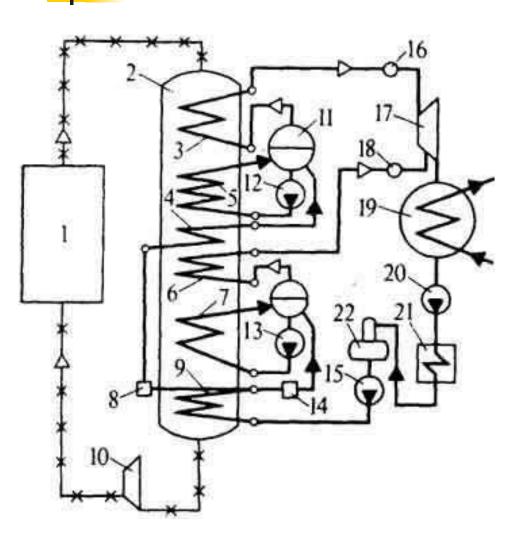
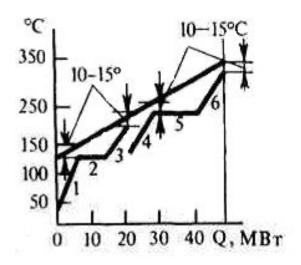



схема двух давлений

- *1* реактор;
- *2* ΠΓ;
- 3 ПП высокого давления (ВД);
- 4 экономайзер второй ступени ВД;
- 5 испаритель ВД;
- 6 ПП низкого давления (НД);
- 7 испаритель НД;
- 8 регулирующий клапан питания ВД;
- 9 экономайзер ВД (общий);
- *10* газодувка;
- 11 барабан-сепаратор ВД;
- 12 циркуляционный насос ВД;
- 13 циркуляционный насос НД;
- 14 регулирующий клапан питания НД;
- 15 питательный насос;
- 16 паровой коллектор ВД;
- *17* паровая турбина;
- 18 паровой коллектор НД;
- *19* конденсатор;
- 20 конденсатный насос;
- *22* вакуумный деаэратор

Параметры пара ПГ, обогреваемых газообразными теплоносителями

- 1 ЭКО ВД (общая часть)
- 2 Испаритель НД
- 3 ПП НД
- 4 ЭКО вторая часть (ВД)
- 5 испаритель ВД
- 6 ПП НД