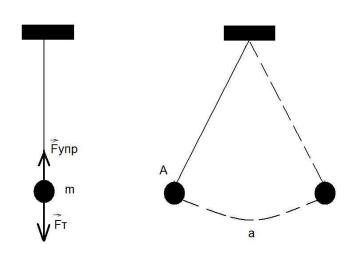
Лабораторная работа №3

«Определение ускорения свободного падения при помощи математического маятника»

Выполнила: Князева А.


Цель работы

Определить ускорение свободного падения при помощи маятника, оценить возможность и точность измерения ускорения данным способом.

Оборудование

Штатив, кольцо, часы с секундной стрелкой, измерительная лента с погрешностью $\Delta \pi = 0.5$ см, нить, шарик с отверстием, через которое можно пропустить нить.

Схема

Таблица 1. Измерения

№ опыта	ℓ, см	N	t, c
1	60	30	47,00
2	-	30	47,87
3	-	30	47,67
4	-	30	46,76
5	-	30	46,97
	_	_	t _{cp} 47,45

Таблица 2. Расчеты

4€, M	π	πN tcp	$\left(\frac{\pi N}{t \text{cp}}^2\right)$	$gcp = 4\ell \left(\frac{\pi N}{tcp}\right)^2$
2,4	3,14	1,98	3,92	9,4

πN tcp

Таблица 3. Вычисление средней погрешности измерений $\Delta t_{\text{ср.}}$

№ опыта	ti	ti - tcp	Δtcp
1	47,00	0,45	-
2	47,87	0,42	-
3	47,67	0,22	-
4	46,76	0,69	-
5	46,97	0,52	-
	tcp 47,45	2,3	0,07

Вычислим относительную погрешность измерения времени.

$$\varepsilon_t = \frac{\Delta t cp}{t cp}$$

$$\varepsilon_{t} = \frac{0.07}{47.45}$$

$$\epsilon_t = 0,0015$$

Вычислим значение абсолютной погрешности $\Delta \ell$

$$\Delta \ell = \Delta \ell_{\text{Л}} + \Delta \ell_{\text{ОТСЧ}}$$

 $\Delta \ell = 0,0005 + 0,01 = 0,0105$

Вычислим относительную погрешность определения ускорения свободного падения.

$$\varepsilon_{\text{A}} = \varepsilon_{\ell} + 2\varepsilon_{\pi} + 2\varepsilon_{\text{t}}$$

$$\varepsilon_{\text{A}} = 0.0205$$

Вычислим абсолютную погрешность измерения ускорения свободного падения.

$$\Delta$$
g= ε_д g_{cp} Δ g=0,0205*9,4=0,1927

Запишем окончательный результат измерений в виде

$$g_{cp} - \Delta g < g < g_{cp} + \Delta g$$

Так как ускорение свободного падения на широте Москвы равно 8156 м/с², данное значение не попадает в полученный интервал.

Вывод

Этот метод не является точным методом для измерения ускорения свободного падения с помощью математического маятника.

Почему специально оговаривается возможность амплитуды колебаний маятника?

Амплитуда оговаривается, потому что колебания маятника являются гармоническими только приближенно - при малых амплитудах так, как чем больше амплитуда, тем больше ошибка приближения.