# Геофизические методы поисков и разведки месторождений полезных ископаемых

Лекция 5 Магниторазведка (часть 1)

#### Введение

- Компас всегда смотрит примерно на север, т.к.Земля имеет магнитное поле.
- Помимо глобального магнитного поля Земли в целом в наблюденном магнитном поле проявляется магнитный эффект намагниченных пород. Многие из них обрели намагниченность в момент своего формирования (например, при остывании магматических пород). Породы намагничивались по направлению существовавшего в тот момент поля.
- Магнитные свойства пород и руд частично определяются историей их формирования. Благодаря этому магнетизм используется для изучения:
  - источников осадков,
  - интенсивности эрозии,
  - присутствия в разрезе вулканических компонент.

#### Свойства магнитного поля

- Земное поле проявляет себя как очень большой магнит, как если бы большой намагниченный брусок поместили в ядре Земли.
- Магнитное поле воздействует на стрелку: она ориентируется вдоль силовых линий, выходящих из одного полюса и входящих в противоположный.
- Силовых линий много. Их можно увидеть рассыпав железные опилки на лист, размещенный над магнитом. Каждая частица станет магнитом и их концы объединятся вдоль силовых линий.
- Единица измерения магнитного поля Тесла Тл

Это очень большая величина.

В практике – нанотесла  $HT_{\pi} = 10^{-9} T_{\pi}$ 

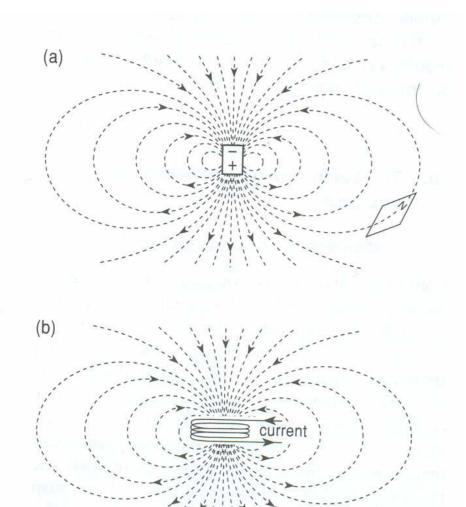



Figure 10.1 Magnetic field of a bar magnet and of a coil.

#### Магнитное поле Земли

- Магн. поле на пов-ти Земли =«норм. поле Земли» + поле земной коры
- Рассмотрим теоретические основы.

Сила взаимодействия между двух изолированных точечных масс определяется законом Кулона (похож на закон притяжения Ньютона, но отличается тем, что магнитное поле зависит от свойств среды:

$$F = \frac{m_1 \cdot m_2}{\mu \cdot \rho^2} \qquad (*) \qquad \begin{array}{c} m_1, m_2 - \text{ точечн. магн. массы} \\ \rho - \text{расстояние между ними} \\ \mu - \text{магнитная проницаемость} \\ \end{array}$$
 Если массы различного знака – действуют силы притяжения;

Если массы одного знака - действуют силы отталкивания.

Сила действующая на единичную массу - напряженность 
$$T = \frac{m}{\mu \cdot \rho^2}$$
 магнитного поля "Т"

Связь между Т и В:  $T = \mu_a \cdot B$   $\mu_a$  – абсолютная магнитная проницаемость среды (для воздуха и воды  $\mu_a$  =1)

В -магнитная индукция - основная силовая х-ка магнитного поля.

**Единицы магнитного поля** Единицей магнитной индукции **«В»** в системе СИ является тесла (Тл); в системе  $C\Gamma C$  – гаусс ( $\Gamma c$ ).

$$1 \Gamma c = 10^{-4} \text{ Тл};$$

В магниторазведке широко используется более мелкая единица – нанотесла (нТл); 1нTл =  $10^{-9}$  Тл.

Единицей напряженности магнитного поля (Т):

в системе СИ –ампер на метр (А/м); в системе СГС – эрстед (Э).

$$1 \ni = 10^3/(4\pi) \text{ A/m}$$

Связь между Т и В в каком либо веществе:

$$T = \mu \cdot \mu_0 \cdot B = \mu_a \cdot B$$

где:  $\mu_0$  – абсолютная магнитная проницаемость вакуума (магнитная постоянная); в СИ  $\mu_0 = 4\pi*10^{-7}$  Гн/м (генри на метр); в СГС  $\mu_0 = 1$  (она безразмерна);

μ – относительная магнитная проницаемость вещества, безразмерная величина, зависящая от его состава и состояния. В СИ и СГС значения одинаковы. Для воздуха и воды они равны единице.

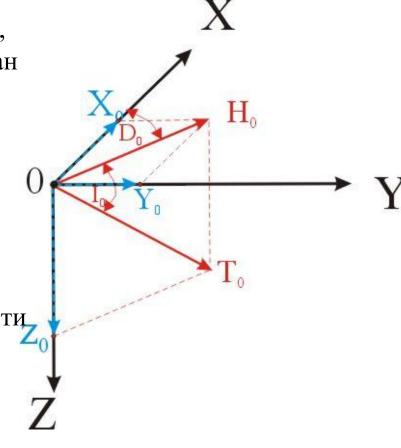
Произведение  $\mu_0^*$   $\mu$  –имеет ту же размерность, что и  $\mu_0$  и называется абсолютной магнитной проницаемостью вещества.

#### Единицы магнитного поля

- Ранее в магниторазведке широко применялась система СГС, а магнитное поле характеризовалось не индукцией, а напряженностью.
- Единицы напряженности в СГС: эрстед (Э).
  - миллиэрстед  $=10^{-3}$ 3;
  - $\Gamma$ амма =  $10^{-5}$ Э.

При сопоставлении карт, оцифрованных в разных единицах, следует руководствоваться: магнитной индукции 1нТл (СИ) соответствует напряженность магнитного поля 1 гамма (СГС).

#### Магнитный потенциал и его производные

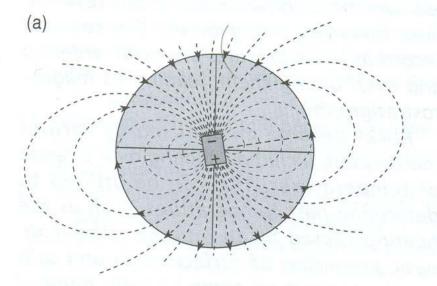

• Для характеристики магнитного поля удобно использовать, как в гравиразведке, магнитный потенциал «U», который связан с напряженностью формулами:

$$T = \frac{\partial U}{\partial \rho};$$
  $Z = \frac{\partial U}{\partial z};$   $X = \frac{\partial U}{\partial x};$   $Y = \frac{\partial U}{\partial y}$ 

где: Z, X, Y – составляющие напряженности магнитного поля по осям

z, x, y.

 ${f D}_0$  –магнитное склонение вектора  ${f T}_0$ ,  ${f I}_0$  – магнитное наклонение вектора  ${f T}_0$ .




#### Составляющие магнитного поля

- Магнитное поле, измеряемое на поверхности Земли включает несколько составляющих:
- 1.«Нормальное поле Земли
  - 1.1. Поле диполя Земли, связываемое с электрическими токами в ядре Земли;
  - 1.2. Континентальные (мировые аномалии), связываемые с электрическими токами в верхней части ядра Земли;
  - 2. Поле электрических токов, протекающих в ионосфере Земли (около 5% норм. поля);
  - 3. Поле намагниченных пород земной коры

# 1. Магнитное поле диполя Земли

- Ось магнитного поля отклонена от географической оси (оси вращения Земли) на  $11.5^0$  МАГНИТНОЕ СКЛОНЕНИЕ (географической оси).
- Относительно оси магнитного поля намечаются полюса (северный и южный) и отсчитывается экватор.
  - Напряженность магнитного поля изменяется в пределах:
  - от  $\approx 30\,000$  нТл на экваторе - до $\approx 60\,000$  нТл на магнитных полюсах



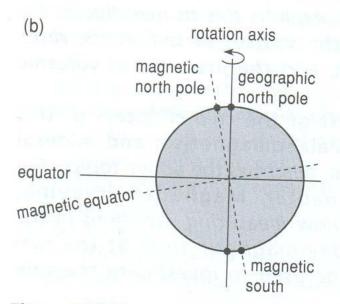
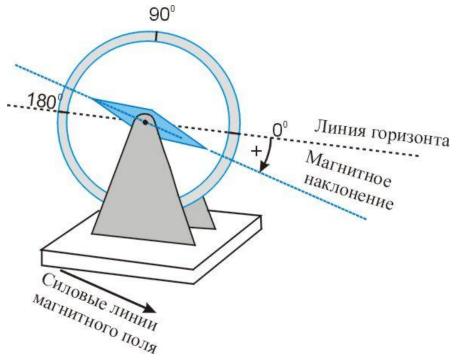



Figure 10.2 Magnetic field of the Earth.

- Линии магнитного поля пересекают поверхность Земли под разными углами. Магнитная стрелка, закрепленная на горизонтальной оси покажет направление силовых линий магнитного поля.
- Угол между линией горизонта и направлением линий магнитного поля —

#### МАГНИТНОЕ НАКЛОНЕНИЕ


• Наклонение "I" положительно, когда стрелка ниже линии горизонта; отрицательно – когда выше.

 $I = 0^0$  на экваторе,  $I = +90^0$  на магн. сев. полюсе. I = -90 на магн. южном полюсе.

• Пусть: І – наклонение  $\lambda$  - географическая широта

$$tg I = 2tg_{\lambda}$$

#### Магнитное наклонение



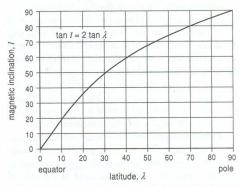
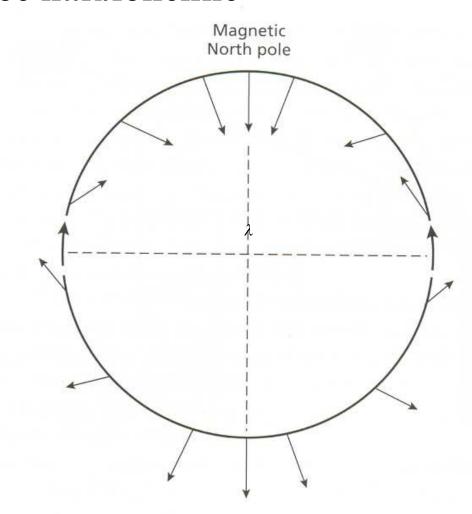




Figure 10.4 Magnetic inclination versus latitude.

#### Магнитное наклонение

#### $tg I = 2tg_{\lambda}$

- Пользуясь этой формулой и зная направление на север можно рассчитать широту (но не долготу)
- Катушка, через которую проходит переменный ТОК же TOTмагнитный создает эффект, что и намагниченная Магнитное пластина. поле Земли аналогично продуцируется электрическими токами жидком ядре называемый процесс «геодинамо».
- Мы называем этот источник магнитного поля «магнитным диполем»

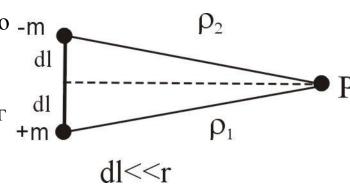


**Fig. 7.7** The variation of the inclination of the total magnetic field with latitude based on a simple dipole approximation of the geomagnetic field. (After Sharma 1976.)

## 4. Поле намагниченных пород земной коры Магнитные свойства пород

- •Магнитные свойства пород определяются суммарным аномальным эффектом элементарных диполей (атомарного -m масштаба).
- •Рассмотрим систему из двух аномальных магнитных масс (m) разных знаков, расположенных на расстоянии 2dl друг относительно друга.
- М-магнитный момент (основная величина, характеризующая магнитные св-ва).

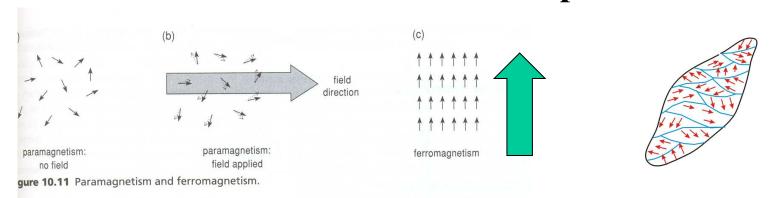
$$d\overline{M} = 2d\overline{l} \cdot m$$


$$\overline{M} = \sum \overline{dM}$$

- •Вектор J магнитный момент, приходящийся на единицу объема интенсивность намагничения.
- Единицей интенсивности намагничения является А/м.

Магнитный потенциал объема выражается через J:

$$U = \int_{\Omega} \frac{Jd\Omega}{\rho_0^2 \cdot \mu}$$

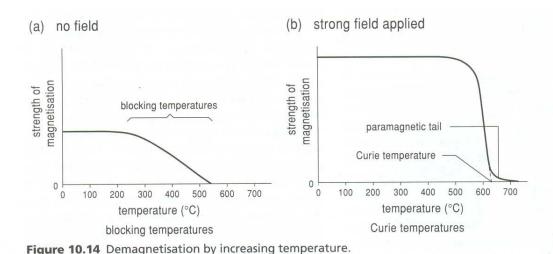

$$\Omega$$
-объем  $\overline{J}$ -вектор



- •Часто для х-ки магнитных св-в используют скалярную величину:
- •Магнитная восприимчивость (χ)— способность г.п. намагничиваться под действием внешнего магнитного поля.

$$J = \chi \cdot \mu_0 \cdot T$$

#### Намагниченность пород




- ДИАМАГНЕТИКИ намагничивание происходит в направлении, противоположном действующему на материал внешнему магнитному полю (вода, соль, Au, Ag, Cu и др)
- Атомы большинства химических элементов магнитоактивны, но у большинства элементов направления намагниченности атомов случайно ориентированы. Под воздействием внешнего магнитного поля Земли атомы слабо ориентируются м-л становится слабомагнитным. После снятия поля намагниченность исчезает (отсутствует способность создавать остаточное поле) «ПАРАМАГНЕТИК»
- У «ФЕРРОМАГНЕТИКОВ» направления намагниченности атомов самопроизвольно согласуется в пределах доменов. Под воздействием внешнего поля домены стремятся перестроиться под него. После снятия внешнего поля сохраняется частичная ориентация доменов остаточное поле.

Большинство ферромагнетиков – соединения железа, широко представленные во многих породах.

- При подъеме температуры колебания зерен (или доменов) возрастают, увеличивается возможность разрушения стен между доменами или разворота направления их намагничения. «блокирующая температура»;
- При дальнейшем нагревании до точки Кюри атомарные магниты теряют связь друг с другом и свойство самопроизвольной намагниченности (св-во ферромагнетика) исчезают м-л становится парамагнетиком.

#### Точка Кюри



### **Механизмы намагничивания пород** 1. Термальная (остаточная) намагниченность.

Когда лава или интрузия остывает, происходит формирование зерен ферромагнетиков. При охлаждении ниже точки Кюри атомарные магниты внутри каждого зерна начинают самопроизвольно формировать домены и ориентируются по внешнему полю – формируется остаточная намагниченность.

- 2. Изотермальная остаточная намагниченность (без нагрева). Отдельные осадочные породы могут быть намагничены за счет удара молнии (редко).
- 3. Химическая остаточная намагниченность. Формируется при химическом преобразовании немагнитных железистых материалов в магнитные в результате выветривания или при осаждении окислов железа из воды, просачивающейся через горные породы. Это важный механизм намагничивания песчаников.
- 4. Кластическая (осадочная) намагниченность. Если намагниченные зерна осаждаются вместе с продуктами эрозии, они стремятся согласовать свою намагниченность с внешним полем.
- 5. Вязкая остаточная намагниченность. Механизм действует в породах, которые имеют точку Кюри немного более высокую, чем температура окружающей среды. За счет длительного времени часть доменов намагничивается по современному полю.

#### Магнитные свойства минералов и пород

#### Магнитные свойства ферромагнитных минералов

| Минерал  | Хим.<br>формула                | Точка Кюри<br>( <sup>O</sup> C) | Намагниченн ость 10 <sup>3</sup> А/м | <b>χ</b><br>Ед. СИ                   |
|----------|--------------------------------|---------------------------------|--------------------------------------|--------------------------------------|
| магнетит | Fe <sub>3</sub> O <sub>4</sub> | 578                             | 490                                  | 4-25                                 |
| гематит  | Fe <sub>2</sub> O <sub>3</sub> | 560-640                         | 1.5-2.5                              | 10 <sup>-4</sup> -2*10 <sup>-3</sup> |
| маггемит | Fe <sub>2</sub> O <sub>3</sub> | 560-640                         | 435                                  | 4-25                                 |
| пирротин | Fe <sub>7</sub> O <sub>8</sub> | 300-325                         | 17-70                                | 10-2-10-1                            |

#### Магнитные свойства горных пород

χ (магнитная восприимчивость) опр-ся главным образом концентрацией ферромагнитных минералов.

Кроме того:  $\chi = \mathbf{f}$  (размера кристалла ф.м. —  $\chi$  — растет с увел. зерен),

 $\chi = \mathbf{f}$  (формы включений ф.м. – менее магнитны г.п., где ф.м. минералы образуют изолированные включения),

- $J_n$ -(естеств. остат. намагн.)= f (состава и истории развития не изм-ся при измнениии направления и интенсивности внешнего поля),
- $J_i$  индуцированная намагниченность обычно пропорциональна  $\chi$  и имеет то же направление, , что и магнитное поле Земли.

#### Магнитные свойства горных пород

 $J_{n}$  и  $J_{i}$ -в общем случае не совпадают. Причины:

- инверсии (изменения полярности Земли),
- остаточная намагниченность отражает намагниченность, полученную в ходе предыдущих эпох.

**Осадочные породы** – наименее магнитны  $\chi = 5-10*10^{-5}$  СИ,

в т.ч. карбонатные и хемогенные  $\chi = 4*10^{-5}$  СИ,

**Магматические породы**: **χ** зависит от состава. Содержание ферромагнетиков повышается от кислых к основным и ультра-основным г.п.

Наименее магнитны - граниты:  $\chi_{\rm cp}$ =0-0.4\*10<sup>-3</sup>СИ, - диориты:  $\chi_{\rm cp}$ =2-4\*10<sup>-3</sup>СИ, - габбро:  $\chi_{\rm cp}$ =2-8\*10<sup>-3</sup>СИ, - пироксениты  $\chi_{\rm cp}$ =2-25\*10<sup>-3</sup>СИ.

**Ультраосновные породы**: неизмененные разности — слабомагнитны, т. к. большая часть Fe входит в состав силикатов. Но при серпентинизации этих г.п. часть высвобождаемого Fe преобразуется в магнетит.

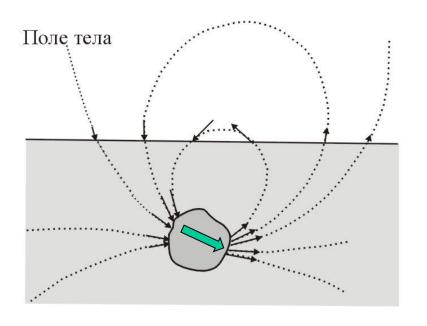
#### Магнитные аномалии

"Нормальное поле Земли"= 
$$\sum (T_{\text{диполя}} + T_{\text{мировых аномалий}} + T_{\text{поле эл токов ионосферы}})$$

- Число мировых аномалий от 4 до 6.
- Разработаны карты «Нормального поля Земли» с осредненными значениями по трапциям  $2^0 x 1^0$ .ты пересчитываются через 5-10 лет.
- Магнитная аномалия отклонение измеренного геомагнитного поля от «Нормального поля Земли».

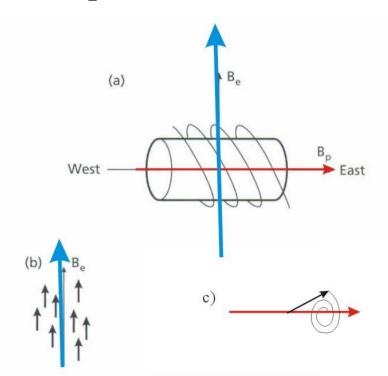
#### Вычисляются аномалии:

- модуля и полного вектора напряженности  $\Delta T_a = T - T_n$  - вертикальной составляющей  $\Delta Z_a = Z - Z_n$  - горизонтальной составляющей  $\Delta H_a = H - H_n$ 


#### Аномалия погребенного

#### тела

- Реальное поле представляет собой сумму двух векторов:
- «нормальное поле Земли»,
- поле геологического тела (тел).
- На одних участках вектора близки по направлениям —суммарный вектор становится длиннее (положительная часть аномалии);
- На других участках вектора нормального поля и поля тела имеют разные направления суммарный вектор становится короче (отрицательная часть аномалии).
- Вывод:

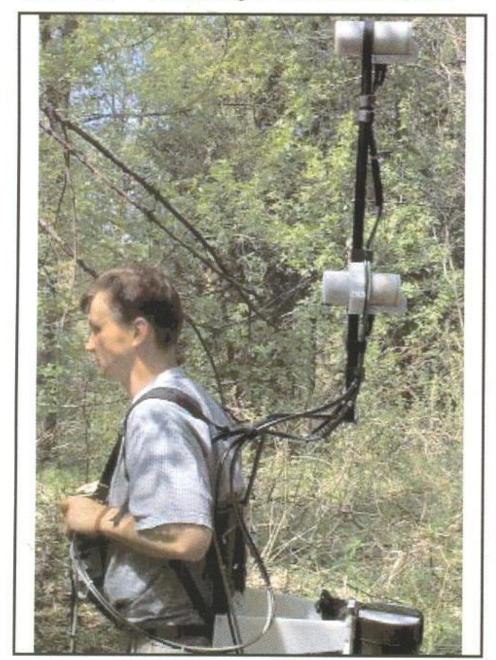

Аномалия погребенного тела зависит от направления и интенсивности поля Земли (т.е. широты) и направления и интенсивности тела.





- •Для измерения магнитного поля используются магнитометры:
  - протонные,
  - квантовые,
  - феррозондовые и др.
- Протонные магнитометры используются для измерений модуля полного вектора напряженности магнитного поля.
- Ядра водорода (или углеводорода (керосин) располагаются в центре атома и имеют положительный заряд маленький магнит.
- Главный элемент системы сосуд с керосином помещенный в соленоид.
- а) С помощью соленоида вокруг сосуда создается сильное магнитное поле >> поля Земли. Направление поля соленоида перпендикулярно полю Земли.
- b) При включении поля соленоида протоны жидкости выстраиваются вдоль направления этого поля.

#### Измерения магнитного поля




с) После выключения поля соленоида элементарные магнитики начинают подстраиваться под поле Земли. Наведенный момент протонов начинает вращаться (процессирует) вокруг оси поля Земли как волчек (гороскоп) в течении нескольких секунд.

Напряженность поля = f (частоты процессии)

# Внешний вид протонного магнитометра

available -- reflecting Overhauser effect

