лекция 2.

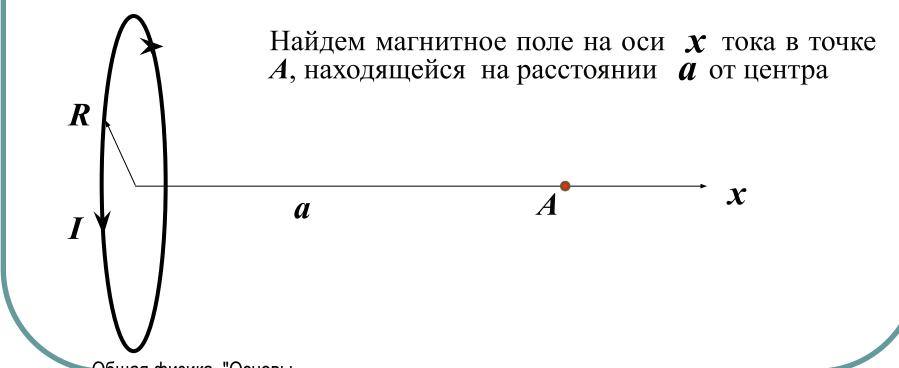
13 февраля 2004г.

ПЛАН ЛЕКЦИИ

- 1. Примеры расчета магнитных полей:
 - магнитное поле на оси кругового тока.
- 2. Поток вектора магнитной индукции. Теорема Гаусса-Остроградского для вектора
- 3. Теорема о циркуляции вектора 🖁
- 4. Примеры расчета магнитных полей:
 - магнитное поле соленоида.
 - магнитное поле тороида (самостоятельно).

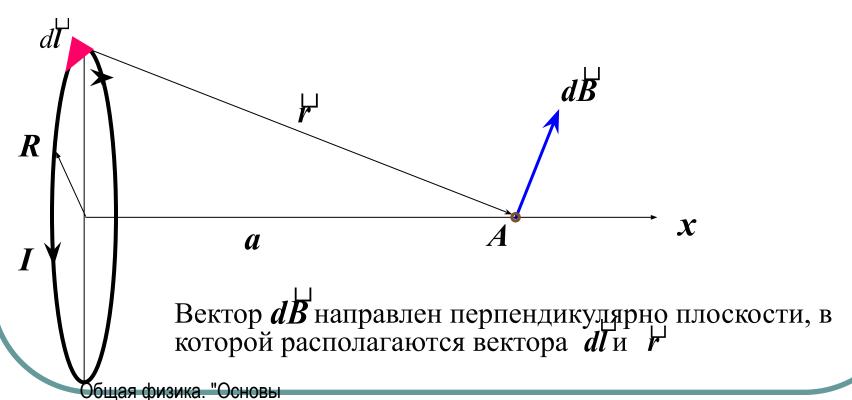
Магнитное поле на оси кругового тока

Пусть электрический ток силой $\emph{\textbf{I}}$ течет по проводнику радиусом $\emph{\textbf{R}}$.



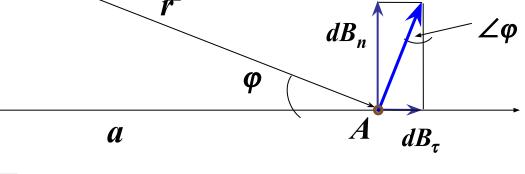
2. Магнитное поле на оси кругового тока

Разобьем круговой ток на элементы тока длиной $d\vec{l}$ и проведем от произвольного элемента тока радиус-вектор \vec{r} в точку A.



статистической физики"

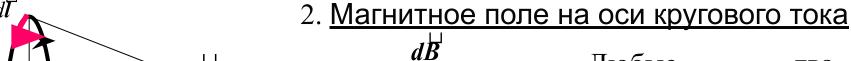
2. Магнитное поле на оси кругового тока

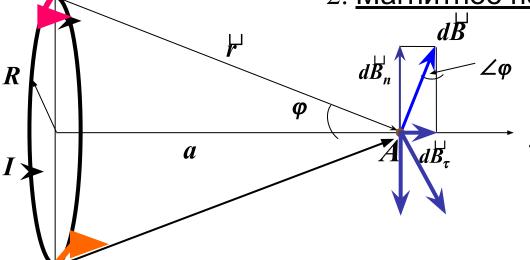


Поскольку все элементы тока перпендикулярны и удалены от A на одинаковое расстояние, то модуль вектора магнитной индукции в этой точке определяется выражением

$$dB = \frac{\mu_0}{4\pi} \frac{I \, dl \, \sin \alpha}{r^2} = \frac{\mu_0}{4\pi} \frac{I \, dl}{r^2} \qquad \left(\alpha = 90^{\circ}, \, \sin 90^{\circ} = 1\right)$$

Разложим вектор $d\overrightarrow{B}$ на две составляющие: $d\overrightarrow{B}_{\tau}$ и $d\overrightarrow{B}_{n}$

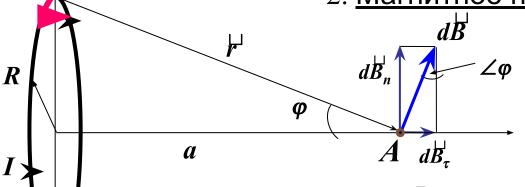




Любые два противоположных элемента тока создают поле, составляющие dB_n которых равны по величине и противоположно направлены.

Следовательно, эти составляющие уничтожают друг друга

Поэтому вектор магнитной индукции можно определить, просуммировав составляющие модулей вектора dB_{τ} (этот вектор направлен вдоль положительной нормали к контуру с током)



$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I \, d\mathbf{l}}{r^2}$$

$$B = \int_{I} dB \sin \varphi = \frac{\mu_0 I}{4\pi r^2} \sin \varphi \int_{I} dl = \frac{\mu_0 I}{4\pi r^2} \sin \varphi 2\pi R = \frac{\mu_0 IR}{2\pi r^2} \sin \varphi$$

Преобразуем полученное выражение, учитывая, что $\sin \varphi = \frac{R}{r}$,

 $r^2 = R^2 + a^2$. После подстановки получим

$$B = \frac{\mu_0 IR}{2r^2} \sin \varphi = \frac{\mu_0 IR}{2(R^2 + a^2)} \frac{R}{\sqrt{R^2 + a^2}} = \frac{\mu_0 IR^2}{2(R^2 + a^2)^{3/2}}$$

$$B = \frac{\mu_0 I R^2}{2(R^2 + a^2)^{3/2}}$$

2. Магнитное поле на оси кругового тока

В центре кругового тока a = 0, индукция магнитного поля равна

$$B_{\theta} = \frac{\mu_{\theta} I}{2R}$$

Вдали от контура на оси x (a >> R): $B = \frac{\mu_0 I R^2}{2a^3}$

$$B = \frac{\mu_0 I R^2}{2a^3}$$

Если умножить числитель и знаменатель этого выражения на π , получим:

$$B = \frac{\mu_0 I \pi R^2}{2\pi a^3} = \frac{\mu_0 IS}{2\pi a^3}$$

где $S = \pi R^2$ - площадь, охватываемая круговым током.

2. Магнитное поле на оси кругового тока

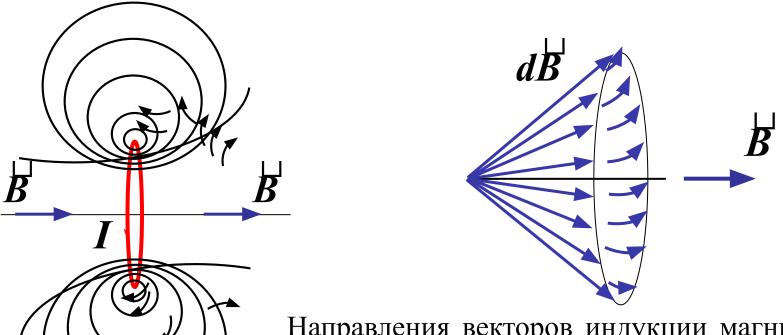
Учитывая, что произведение *IS* для контура с током есть *магнитный момент контура*, введенный нами ранее, выражение для индукции магнитного поля, созданного замкнутым круговым током вдали от тока, можно записать в виде:

$$B = \frac{\mu_0 p_m}{2\pi r^3}$$

Записывая это соотношение приняли, что вдали от кругового тока $a \approx r$.

Графическое изображение магнитного поля кругового тока

Покажем линии магнитной индукции поля кругового тока, лежащие в одной из плоскостей, проходящей через ось тока



Направления векторов индукции магнитного поля, в точке, лежащей на оси, которая проходит через центр кругового тока.

Потоком вектора магнитной индукции (магнитным потоком) через площадку \boldsymbol{S} называется величина

$$\Phi_B = BS \cos \alpha = B_n S,$$

где α - угол между нормалью к площадке и вектором магнитной индукции, B_n - проекция вектора B на нормаль к площадке.

Магнитный поток через площадку, в зависимости от ориентации вектора \boldsymbol{B} по отношению к нормали, может быть как положительным, так и отрицательным, что определяется знаком проекции \boldsymbol{B}_n .

Единицей магнитного потока в системе СИ является вебер ($B \delta$).

Магнитный поток через элемент dS поверхности S соответственно, выражается формулой

$$d\Phi_B = (B, dS) = BdS \cos\alpha$$

В этой формуле $dS = dSn^{b}$, n^{b} - орт вектора нормали.

Полный поток через поверхность S равен сумме потоков через все элементы поверхности, т.е. равен интегралу:

$$\Phi_B = \int_S \left(B, dS \right) = \int_S B_n dS$$

Если поверхность замкнутая, то

$$\Phi_B = \oint_S B_n dS = \oint_S \left(B, dS \right)$$

Поскольку силовые линии магнитного поля замкнуты, то любая силовая линия пересекает замкнутую поверхность дважды (четное число раз), причем один раз в положительном по отношению к нормали направлении, а другой раз — в отрицательном. Поэтому суммарный магнитный поток, пронизывающий замкнутую поверхность S, всегда оказывается равным нулю:

$$\Phi_B = \oint (B, dS) = 0$$
теорема Гадля магни

теорема Гаусса-Остроградского для магнитного поля.

Поток вектора напряженности магнитного поля через любую замкнутую поверхность равен нулю:

$$\oint_{S} \left(B, dS \right) = 0$$

Важное следствие из теоремы Гаусса:

В дифференциальной форме уравнение Гаусса имеет вид

$$div\vec{B} = 0$$

Сведения из векторного анализа: ... дивергенция характеризует интенсивность (обильность) истоков и стоков векторного поля.

Если $div \vec{B} = 0$, это означает, что магнитное поле не имеет стоков и истоков, линии \vec{B} замкнутые. Магнитное поле имеет $\underline{conehoudanbhuu}$ или $\underline{suxpesou}$ характер.

Физическая причина соленоидальности магнитного поля - отсутствие свободных магнитных зарядов, аналогичных электрическим зарядам.

Теорема о циркуляции вектора 🛭 🧗

Циркуляцией вектора \vec{B} по замкнутому контуру \vec{L} называется интеграл вида $\oint (\vec{B}, dl) = \oint B_l dl$

где dl- вектор элемента длины контура, $B_l = B \cos \alpha$, α - угол между векторами B и dl

Циркуляция вектора \vec{B} по произвольному замкнутому контуру L равна произведению μ_0 на алгебраическую сумму токов, охватываемых контуром:

$$\oint_{I} \left(B, dI \right) = \mu_{0} I$$

Это закон (теорема) о циркуляции вектора В. Иначе эта теорема называется законом полного тока для магнитного поля в вакууме.

Теорема о циркуляции вектора 🖁

$$\oint_{L} (B, dI) = \mu_{\theta} I$$

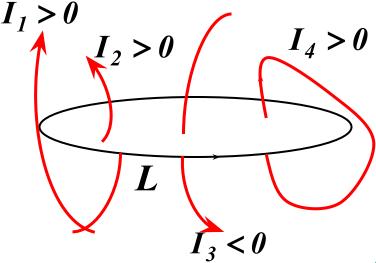
 $I(B,dI) = \mu_0 I$ Ток Iв теореме есть алгебраическая сумма токов I_R охватываемых контуром L: $I = \sum_{k=1}^{N} I_k$

Ток положительный, если его направление связано с направлением обхода по контуру правилом правого винта. Ток противоположного направления - отрицательный.

Пример

токи I_1 , I_2 и I_4 - положительные, ток I_3 - отрицательный. Сумма токов:

$$I_k = \theta \cdot I_1 + I_2 - I_3 + I_4 = I_2 - I_3 + I_4$$



Теорема о циркуляции вектора 🔏

Если ток I распределен по объему, где расположен контур L, то этот ток можно представить как

$$I = \int j dS$$

Интеграл берется по произвольной поверхности \boldsymbol{S} , «натянутой» на контур \boldsymbol{L}

Плотность тока j под интегралом — это плотность в точке, где расположена площадка dS.

Вектор dS образует с направлением обхода по контуру правовинтовую систему.

Таким образом, теорема о циркуляции вектора \vec{B} в общем случае будет выглядеть так:

$$\oint (B, dI) = \mu_0 \int J dS$$

Циркуляция вектора **В** не равна нулю. Это означает, что магнитное поле в отличие от электростатического поля не потенциально.

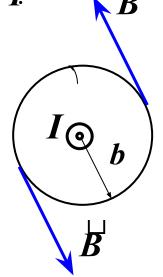
Теорема о циркуляции вектора 📙

Применение теоремы о циркуляции вектора \boldsymbol{B} в ряде случаев упрощает расчет поля, особенно если вычисление циркуляции \boldsymbol{B} можно свести к произведению \boldsymbol{B} (или проекции \boldsymbol{B}) на длину контура или его часть.

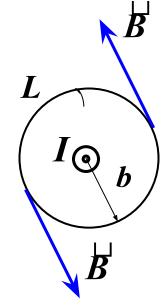
Пусть ток направлен перпендикулярно плоскости рисунка, к нам.

Линии вектора \mathbf{B} имеют вид окружностей с центром на оси тока.

Во всех тонках на расстоянии b от центра модуль вектора B одинаков.



Теорема о циркуляции вектора 📙



Применим теорему о циркуляции вектора \vec{B} для выбранного круглого контура \vec{L} :

$$\oint_{L} \left(B, dI \right) = \oint_{L} B_{l} dl = \oint_{L} B dl = B \oint_{L} dl = B 2\pi b = \mu_{0} I$$

В итоге получили выражение $B2\pi b=\mu_0 I$, или

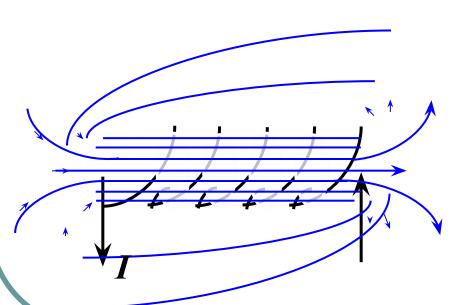
$$B = \frac{\mu_{\scriptscriptstyle 0} I}{2\pi b}$$

Эта формула совпадает с выражением, полученным в лекции 1.

Магнитное поле соленоида

Используем теорему о циркуляции для расчета магнитного поля соленоида

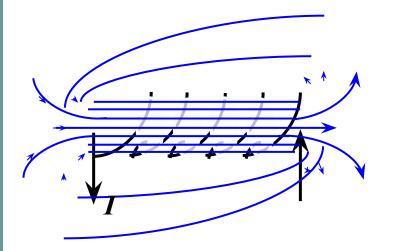
Соленоид — это проводник, намотанный по винтовой линии на поверхность цилиндрического каркаса



Линии магнитной индукции вне и внутри соленоида выглядят следующим образом:

Линии вектора **В** внутри соленоида направлены по оси так, что образуют с направлением тока в соленоиде правовинтовую систему

Магнитное поле соленоида



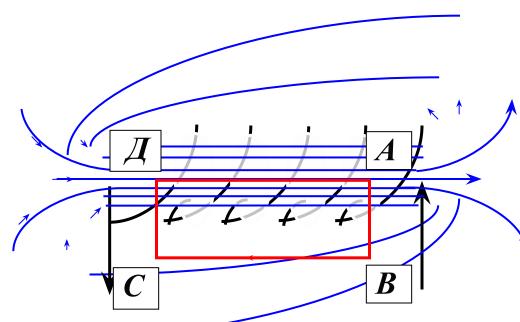
Опыт показывает, что чем длиннее соленоид, тем меньше поле вне его. Поэтому можно считать, что поле бесконечно длинного соленоида сосредоточено внутри его, а поле снаружи отсутствует

Пусть длинный соленоид с током I имеет n витков на единицу длины.

Если шаг винтовой линии мал, то каждый виток соленоида можно заменить замкнутым витком.

Для расчета поля внутри соленоида выберем прямоугольный контур и вычислим циркуляцию магнитного поля по этому контуру.

Магнитное поле соленоида

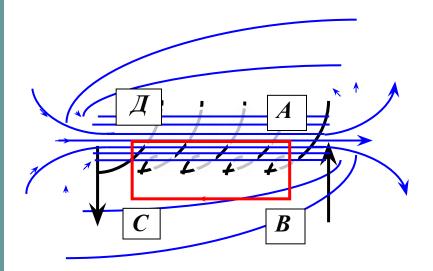


Циркуляцию вектора \vec{B} по замкнутому контуру $ABC \square A$, который охватывает N витков, вычислим по формуле:

$$\oint B_l dl = \mu_0 NI$$
ABCДА

Интеграл по ABCДA можно представить в виде четырех интегралов: по AB, BC, CД и ДA.

Магнитное поле соленоида



На участках AB и $C\mathcal{A}$ контур перпендикулярен линиям магнитной индукции и $B_l = 0$.

На участке \mathcal{A} контур совпадает с линией магнитной индукции и циркуляция вектора \boldsymbol{B} равна $\boldsymbol{B}\boldsymbol{l}$.

На участке BC вне соленоида B = 0

В итоге получаем:

$$\oint_{ABC} B_l dl = \oint_{AB} B_l dl = Bl = \mu_0 NI$$

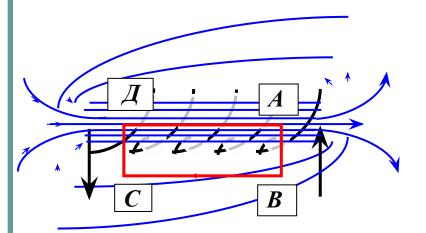
Или:
$$B = \frac{\mu_{\theta} NI}{I}$$

Магнитное поле соленоида

Поскольку N/l=n, то окончательно получим

$$B = \mu_0 nI$$

Таким образом, поле внутри соленоида *однородно* (краевыми эффектами пренебрегаем). Произведение *nI* называется числом *ампервитков* соленоида и относится к его характеристикам.



Некорректность при выводе формулы: интеграл по *CB* принят равным нулю. Строгий подход: линии магнитного поля замкнуты и внешнее поле не равно нулю. Однако, это некорректность принципиально на результате не отражается.

Самостоятельно: расчет магнитного поля тороида.