[Радиоматериалы и радиокомпоненты]

[210303.65 «Бытовая радиоэлектронная аппаратура»

210305.65 «Средства радиоэлектронной борьбы»]

[ИИБС, кафедра Электроники]

[Преподаватель Останин Борис Павлович]

Радиоматериалы и радиокомпоненты

Раздел 3 Конденсаторы

Лекция 2

ОСНОВНЫЕ РАЗНОВИДНОСТИ КОНДЕНСАТОРОВ

Основные разновидности конденсаторов

- 1. Керамические
- 2. Стеклянные, стеклокерамические и стеклоэмалевые
- 3. Слюдяные
- 4. Бумажные
- 5. Электролитические
- 6. Плёночные
- 7. Вариконды
- 8. Варикапы

Керамические конденсаторы широко применяют высокочастотных цепях. Основой конструкции является заготовка из керамики, на две стороны которой нанесены металлические обкладки. Конструкция может быть секционированной, трубчатой или дисковой. Эти конденсаторы не трудоёмки в изготовлении и дёшевы. Для изготовления применяется керамика с различной диэлектрической проницаемостью ($\varepsilon > 8$) и ТКЕ $(-2200 \cdot 10^{-6} \dots 100 \cdot 10^{-6} \quad 1/^{\circ}C)$. Применяя параллельное включение конденсаторов с разными знаками ТКЕ, можно получить достаточно высокую стабильность результирующей ёмкости при изменении температуры.

До сих пор выпускаются ранее разработанные виды конденсаторов:

- 1. КЛГ керамические литые герметизированные,
- 2. КЛС керамические литые секционированные,
- 3. КМ керамические малогабаритные пакетные,
- 4. КТ керамические трубчатые,
- 5. КТП керамические трубчатые проходные,
- 6. КО керамические опорные,
- 7. КДУ керамические дисковые,
- 8. КДО керамические дисковые опорные.

Новые разработки керамических конденсаторов обозначают буквой К. Они предназначаются для использования в качестве компонентов микросхем и микросборок.

Стистивне, стистивней и стистивней и как и керамические, относятся к высокочастотным. Они состоят из тонких слоёв диэлектрика, на которые нанесены тонкие металлические плёнки. Для придания конструкции монолитности весь набор спекают при высокой температуре. Эти конденсаторы обладают высокой теплостойкостью и могут работать при температуре до 300 °C.

Три разновидности

- 1. К21 стеклянные,
- 2. К22 стеклокерамические,
- 3. К23 стеклоэмалевые.

Стеклокерамика имеет более высокую диэлектрическую проницаемость, чем стекло. Стеклоэмаль имеет более высокую электрическую прочность.

Слюдяные конденсаторы применяются цепях и имеют высокочастотных пакетную конструкцию. В качестве диэлектрика используют слюдяные пластинки толщиной 0,02...0,06 мм. Диэлектрическая проницаемость слюды составляет $\varepsilon \approx 6$, а $tg\delta = 10^{-4}$. В настоящее время слюдяные конденсаторы обозначают К31. В применяют также ранее разработанные конденсаторы - КСО - конденсаторы слюдяные опрессованные., ёмкость которых 51 пФ...0,01 мкФ.

Бумажные. В бумажных конденсаторах в качестве диэлектрика применяется конденсаторная бумага толщиной 6...10 мкм, диэлектрическая проницаемость которой $\varepsilon = 2...3$. Поэтому эти конденсаторы имеют большие размеры. Изготовляют бумажные конденсаторы из двух длинных, ввернутых в рулон, лент фольги, изолированных друг от друга конденсаторной бумагой. Обозначение К40 или К41.

На высоких частотах эти конденсаторы не применяются из-за больших диэлектрических потерь и большой собственной индуктивности. Металлобумажные конденсаторы К42 — разновидность бумажных конденсаторов. В них вместо фольги используют тонкую металлическую плёнку, нанесённую на конденсаторную бумагу.

Электролитические конденсаторы. В этих конденсаторах в качестве диэлектрика используют тонкую оксидную плёнку, нанесённую на поверхность металлического электрода, называемого анодом. Второй обкладкой является электролит. В качестве электролита используют концентрированные растворы кислот и щелочей. По конструктивным признакам их делят на

- 1. жидкостные,
- 2. сухие,
- 3. оксидно-полупроводниковые,
- 4. оксидно-металлические.

В жидкостных конденсаторах анод выполнен в виде стержня, на поверхности которого создана оксидная плёнка. Он погружён в жидкий электролит, находящийся в алюминиевом цилиндре. Для увеличения ёмкости анод делают объёмнопористым путём прессования порошка металла и последующего спекания при высокой температуре.

В сухих конденсаторах применяют вязкий электролит. Конденсатор изготавливают из двух лент фольги (оксидированной и неоксидированной), между которыми помещается прокладка из бумаги или ткани, пропитанной электролитом. Фольга сворачивается в рулон и помещается в кожух. Выводы делают от оксидированной (анод) и неоксидированной (катод) фольги.

В оксидно-полупроводниковых конденсаторах в качестве катода используют диоксид марганца.

В оксидно-металлических конденсаторах функции катода выполняет металлическая плёнка оксидного слоя.

Особенностью электролитических конденсаторов является их униполярность, то есть они могут работать при подведении к аноду положительного потенциала, а к катоду — отрицательного. Поэтому их применяют в цепях пульсирующего напряжения, полярность которого не изменяется.

Электролитические конденсаторы обладают очень большой ёмкостью (тысячи микрофарад) при сравнительно небольших габаритах. Но они не могут работать в высокочастотных цепях, так как из-за большого сопротивления электролита $tg\delta$ достигает 1,0.

Поскольку при низких температурах электролит замерзает, то в качестве одного из параметров электролитических конденсаторов указывают минимальную температуру, при которой допустима работа конденсатора.

Четыре группы электролитических конденсаторов по допустимому значению отрицательной температуры

- 1. Н неморозостойкие (Tmin = 10 °C),
- 2. М морозостойкие ($Tmin = -40 \, ^{\circ}C$),
- 3. ПМ повышенная морозостойкость ($Tmin = -50 \, ^{\circ}C$),
- 4. ОМ особо морозостойкие (Tmin = -60 °C).

При понижении температуры электролитического конденсатора его ёмкость уменьшается, а при повышении возрастает.

В плёночных конденсаторах в качестве диэлектрика используются синтетические высокомолекулярные тонкие плёнки. Современные технологии позволяют получать лёнки, наименьшая толщина которых составляет 2 мкм, механическая прочность 1000 кг/см, а электрическая прочность до 300 кВ/мм. Такие свойства позволяют создавать конденсаторы очень малых габаритов. Конструктивно они аналогичны бумажным конденсаторам и относятся к 7-й группе.

В качестве диэлектрика у плёночных используют:

К71 - полистирол,

К72 - фторопласт,

К73 - полиэтилентерефтолат,

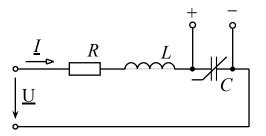
К75 - комбинированное сочетание полярных и неполярных плёнок, что повышает их температурную стабильность.

К76 - тонкая лаковая плёнка (толщиной около 3 мкм), что существенно повышает ёмкость,

К77 - поликарбонат. Даёт высокую удельную ёмкость и высокую температурную стабильность.

В качестве обкладок у плёночных конденсаторов используют:

- 1. алюминиевую фольгу;
- 2. напылённые на диэлектрическую плёнку тонкие слои алюминия или цинка.


Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму.

Вариконды. Это конденсаторы, ёмкость которых зависит от напряженности электрического поля. Они выполняются на основе сегнетоэлектриков (титаната бария, стронция, калия и др). Для них характерны высокие значения относительной диэлектрической проницаемости и её сильная зависимость от напряжённости электрического поля и температуры. Применяют вариконды как элементы настройки колебательных контуров.

Если вариконд включить в цепь резонансного LC контура и изменять напряжение, подводимое к нему от источника постоянного тока, то можно изменять резонансную частоту этого контура.

Варикапы. Это одна из разновидностей полупроводникового диода, к которому подводится обратное напряжение, изменяющее ёмкость диода. Благодаря малым размерам, высокой добротности, стабильности и значительному изменению ёмкости, варикапы широко применяются в РЭА для настройки контуров и фильтров.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Укажите основные разновидности конденсаторов.
- 2. Поясните устройство керамических конденсаторов.
- 3. Поясните устройство стеклянных, стеклокерамических и стеклоэмалевых конденсаторов.
- 4. Поясните устройство слюдяных конденсаторов.
- 5. Поясните устройство бумажные конденсаторов.
- 6. Поясните устройство электролитические конденсаторов.
- 7 Поясните устройство плёночные конденсаторов.
- 8. Поясните устройство варикондов.
- 9. Поясните устройство варикапов.