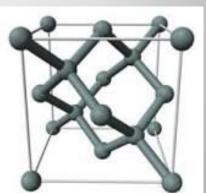
Национальный исследовательский университет «МИЭТ» Дисциплина «Технология интегральных микросхем» Модуль 2. «Физико-химические методы обработки поверхности»

Основы поверхностной обработки полупроводниковых материалов.

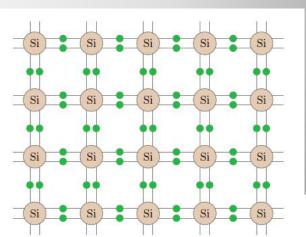
Кристаллическая структура кремния. Химическая обработка подложек кремния: очистка в растворителях, травление. Химическое анизотропное травление. Контроль чистоты поверхности подложек.

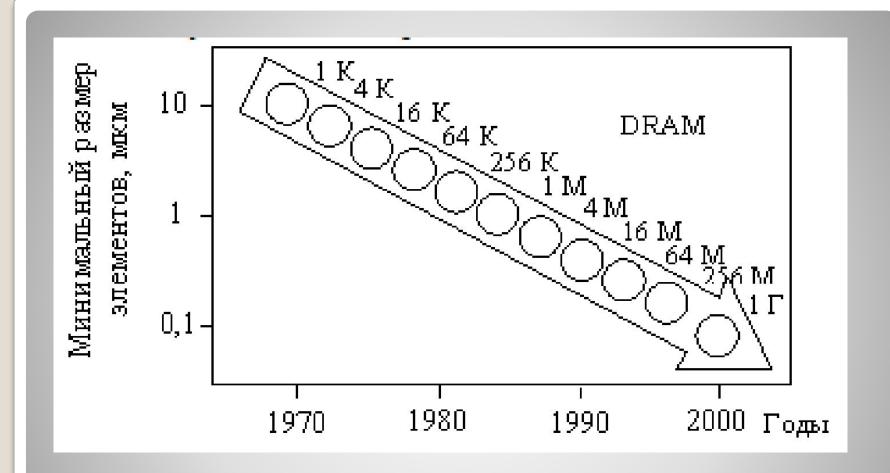

Лектор: Козлов Антон Викторович, к.т.н., доцент

Лекция 2

- Кристаллическая структура кремния.
- Химическая обработка подложек кремния: очистка в растворителях, травление.
- Химическое анизотропное травление.
- Контроль чистоты поверхности подложек.

Содержание


• **Кристаллическая** решётка **кремния** кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм, но изза большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твёрдость **кремния** значительно меньше, чем алмаза.



Кристаллическая структура

- Объемная структура (можно изобразить плоской). Большими кружками показаны ионы кремния или германия. Ядра атомов вместе с электронами на внутренних оболочках обладают положительным зарядом 4, который уравновешивается отрицательными зарядами четырех электронов на внешней оболочке.
- Внешние электроны показаны маленькими кружками. Вместе с электронами соседних атомов они образуют ковалентные связи, показанные линиями на кристаллической решетке.
- Таким образом, на внешней оболочке находятся четыре своих электрона и четыре электрона, заимствованные у четырех соседних атомов. При температуре абсолютного нуля все электроны внешних оболочек участвуют в ковалентных связях. При этом кремний и германий являются идеальными изоляторами, так как не имеют свободных электронов, создающих проводимость.

Кристаллическая решетка кремния

Изменение минимального размера элементов и объема динамической памяти (от килобайт до гигабайт) электронных элементов во времени

Параметр	БИС	СБИС	УБИС
Число элементов на кристалле	$10^3 - 10^5$	$10^5 - 10^7$	$10^7 - 5.10^8$
Площадь кристалла, мм ²	20 - 50	50 – 70	80 – 100
Топологический размер, мкм	2-1,5	1,2 - 0,8	0,7-0,3
Толщина слоя подзатворного диэлектрика, нм	90 – 40	40 – 15	15 – 10
Глубина <i>p-n</i> - перехода, мкм	1,2-0,8	0,5-0,2	0,2-0,1
Число шаблонов, шт.	6-10	8 – 15	12 – 18

Характеристики ИС

- Органических загрязнения (фоторезист, жиры, смазки, масла);
- Наличие примесей металлов (алюминий, железо, медь, серебро, золото);
- Остатки механических частиц (резина, пластмассы, металлы);
- Жидкие загрязнения (водные соединения);
- Твердые пленочные загрязнения.

Классификация загрязнений

- Рабочий персонал (метод ламинарного потока сверху вниз, который может быстро удалять пыль).
- **Окружающая среда** (используемая для хранения и транспортировки кассет с пластинами).
- Материалы (технологические среды, чистота расходных материалов, плотность и физический размер микродефектов на поверхности).
- Оборудование (механические узлы оборудования пыль, продукты химических реакций).
- Технологические процессы (загрязнения, привносимые самим процессом произ водства микроэлектронных изделий).

Требования	Емкость памяти ИС					
	16K	64K	256K	1M	4M	16M
Содержание лимитирующих примесей			10-5-10-4	10-6-10-		
в материалах, ат%	10 ⁻⁴	10 ⁻⁴		8	10-8	10 ⁻⁹
Критический размер инородных частиц					0,01-	
в газовых и жидких средах, мкм					0,05	
	0,4	0,3	0,2	0,1	,000	0,05
Микроорганизмы в воде, колоний на мл						
	1,0	1,0	0,8	0,5	0,2	0,1

Требования к газам, воздушным средам, воде, химическим реактивам

- Надежность ИС;
- Качество ИС;
- Процент выхода годных ИС.

Через:

- Фотолитографию (механические загрязнения меняют рисунок элемента);
- Ионную имплантацию, приводящую к рассеянию ионного пучка;
- Создание эпитаксиальных слоев (загрязнения приводят к дефектообразованию, проявляющемуся в виде вздутий, бугорков, трещин, проколов).

Механические загрязнения влияют на:

- Ме растворяются в SiO2 -> изменяется время жизни носителей, образуются энергетические уровни в запрещенной зоне, ухудшается процесс термического окисления, увеличиваются токи утечки, нарушается работа транзисторов.
- Остатки водных растворов на основе HF содержат металлические примеси Fe, Cu, Ni, Zn, Cr, Fe, Hg, Au. Например, мин.тех.нормы 0,6мкм уровень опасных примесей Me (Ni, Cu, Na) менее $5*10^{10}$ ат/см²; мин.тех. норма 250нм менее $2,5*10^{10}$ ат/см²; мин.тех.норма 180нм менее $1,3*10^{10}$ ат/см²;
- Загрязнения на основе Fe очень распространены, т.к. Fe содержится в металлических элементах оборудования.

Металлические загрязнения

- Появляются после операций обработки, травления и очистки поверхности;
- Влияют на качество диэлектрика (особенно при толщинах менее 10нм);
- Влияют на качество слоя поликремния (затворы МДП транзисторов, мостиковое соединение проводников, резистивные элементы);
- Контроль поверхности проводят профилографом или сканирующим зондовым микроскопом, или атомно-силовым микроскопом.

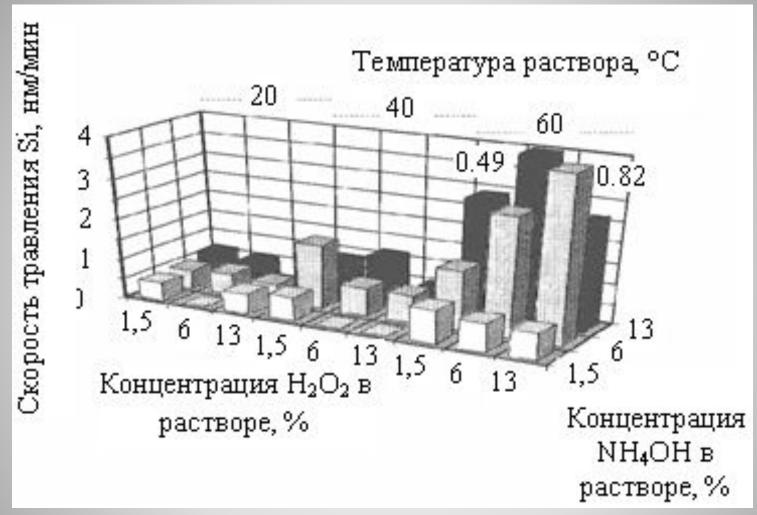
Микронеровности поверхности

- Окислительные дефекты упаковки (ОДУ) снижают плотность тока;
- Преципитаты кислорода (кластеры SiO₂) приводят к внутреннему геттерированию (связывание в нейтральные ассоциации подвижных, нежелательных примесей и дефектов на границах раздела, образованных внешней поверхностью кристаллов или поверхностью границ преципитатов), влияет на формирование слоев SiO₂, что оказывает воздействие на движение электрического заряда;
- **Кристаллические дефекты**, обусловленные наличием пор или включений у поверхности пластины, соизмеримы с размерами механических загрязнений.

Кристаллические дефекты

- «Жидкостная» химическая очистка использование растворов с большим "редокс"- потенциалом (электродный потенциал окислительно-восстановительной реакции) для удаления металлических и органических загрязнений с поверхности кремниевых пластин.
- В растворах H₂SO₄/H₂O₂ и HCI/H₂O₂/H₂O, имеющих высокий "редокс"-потенциал, при высокой температуре (больше 100 °C) происходит удаление металлических примесей и органических загрязнений (фоторезиста) с поверхности подложек. Органические пленки под действием кислот при высокой температуре разрушаются и продукты реакции переходят в раствор.

Удаление загрязнений с поверхности пластин в процессах химической обработки


- На поверхности Si-пластин в процессе изготовления ИС могут находиться слои SiO_2 , Si_3N_4 , Al, органических соединений и др.
- В алкильных растворах все эти материалы имеют отрицательный псипотенциал (электрокинетический потенциал частиц в кинетике обменных химических реакций), т.е. такой же полярности, что и используемый раствор NH₄OH/H₂O₂/H₂O (табл.1). Загрязнения на поверхности, взаимодействуя с заряженными тем же знаком псипотенциала частицами раствора, взаимно отталкиваются и, таким образом, удаляются с поверхности пластины.

Материалы	HF/H ₂ O	NH ₄ OH/H ₂ O ₂	
	(pH = 3)	(pH = 8,8)	
Si	-20	-50	
SiO ₂	10	-60	
ξ-механические частицы	60	-30	

Удаление загрязнений с поверхности пластин в процессах химической обработки

- Удаление механических загрязнений с поверхности полупроводниковых пластин в основном используется обработка погружением в перекисно-аммиачный раствор ($NH_4OH/H_2O_2/H_2O$).
- Между двумя химическими компонентами про исходит компенсационное взаимодействие: перекись водорода (H_2O_2) окисляет кремний и образует слой оксида кремния (SiO_2) непосредственно на поверхности подложки, а аммиак, напротив, подтравливает образовавшийся слой SiO_2 .
- Слой SiO₂ постоянно образуется и удаляется, а подтравливание слоя SiO₂ под частицами способствует удалению с поверхности Si пластин загрязнений.
- **Недостаток:** изменение концентрации компонентов в растворе в процессе его использования и хранения, что приводит к ухудшению характеристик поверхности подложек.

Очистка поверхности подложек в перекисно-аммиачном растворе

Изменение скорости травления поверхности кремниевой пластины при изменении концентрации компонентов в процессе аэрозольно-капельного распыления раствора NH₄OH/H₂O₂/H₂O при различной температуре

- Бесконтактные методы (анализ отраженного сканирующего лазерного луча и микроскопия);
- Микроскопические методы (электронная и оптическая микроскопия) - растровая электронная микроскопия (РЭМ), просвечивающая электронная микроскопия (ПЭМ);
- Контрольная аппаратура оптический микроскоп с увеличением до х500.

Методы анализа частиц на поверхности пластин

- Методы, основанные на смачиваемости поверхности пластин жидкостями, позволяют фиксировать физическую неоднородность поверхности, обнаруживать органические загрязнения с чувствительностью 10⁻⁵–10⁻⁸ г/см².
- Например, методы окунания, пульверизации воды, конденсации воды, запотевания.
- Недостатки: малая чувствительность при низких концентрациях загрязнений; отсутствие возможности контроля других типов загрязнений.

Методы анализа органических загрязнений на поверхности пластин

- Электрохимические методы для анализа жидких технологических сред и исследование поверхности на примесей ионов металлов. Различают методы: электрогравиметрический (потенциометрические и вольтамперметрические), кулонометрический, полярографический, кондуктометрический анализы.
- Радиохимические методы включают в себя нейтронно-активационный анализ, метод радиоактив ных индикаторов и др. Обладают низкой чувствительностью.
- Электронная Оже-спектроскопия (ЭОС), метод локального рентгеновского анализа обеспечивают анализ поверхности с высокой чувствительностью (до 0,1 ат.%)
- Наиболее эффективным для анализа распределения примесей по поверхности и глубине образцов является метод вторичной ионной масс-спектроскопии (ВИМС) с чувствительностью до 10⁻⁶ ат%.

Методы анализа металлических загрязнений на поверхности пласт

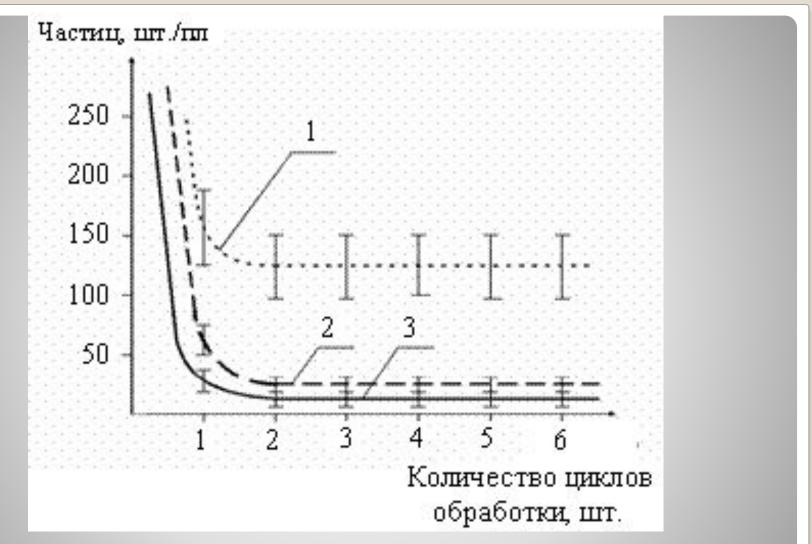
- Методом сканирующей зондовой микроскопии (СЗМ) исследуют свойства поверхностей материалов в диапазоне микронного, атомного уровней.
- В СЗМ существует метод исследования поверхности полупроводниковых пластин с применением атомно-силовой микроскопии.
 Этот метод весьма привлекателен низкими требованиями к подготовке образцов.
- АСМ используется для контроля характеристик поверхности полупроводниковых пластин в процессе проведения процессов "жидкостных" химических обработок подложек

Методы исследования рельефа

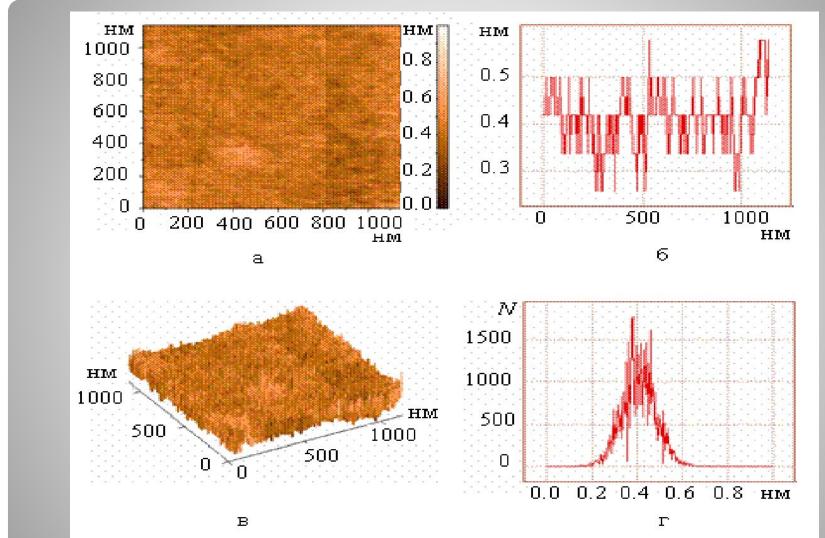
 Химическая обработка в растворах RCA (последовательно вы полняемые операции):

 H_2SO_4/H_2O_2 (7:3) при 120 °C – удаляются органические загрязнения, ионы металлов; H_2O/HF (100:0,5) 20 °C – удаляется пленка естественного слоя SiO_2 ;

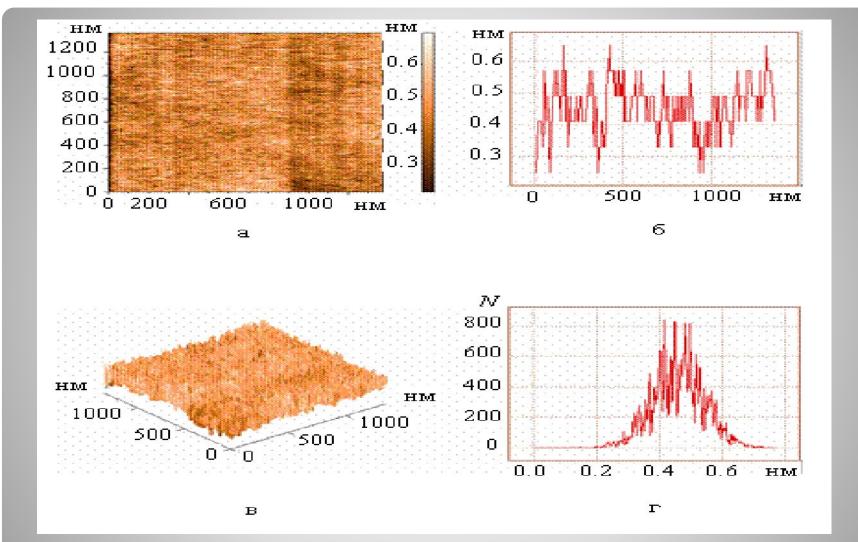
 $NH_4OH/H_2O_2/H_2O$ (1:1:6) при 80 °C – удаляются механические частицы, органические загрязнения;

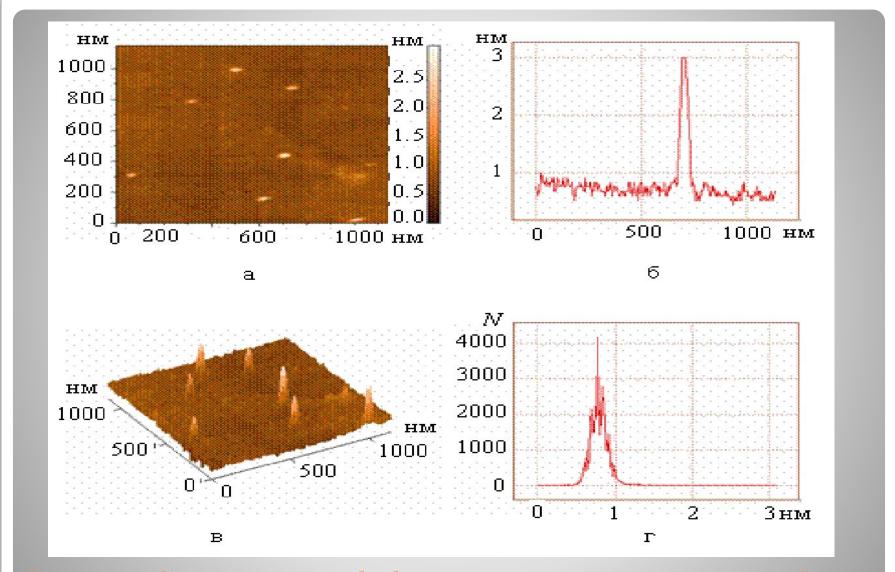

 $HCI/H_2O_2/H_2O$ (1:1:6) при 80 °C – удаляются металлические загрязнения; H_2O/HF (100:0,5) при 20 °C – удаляются химические оксиды; отмывка в воде после обработки в каждом из реагентов; сушка.

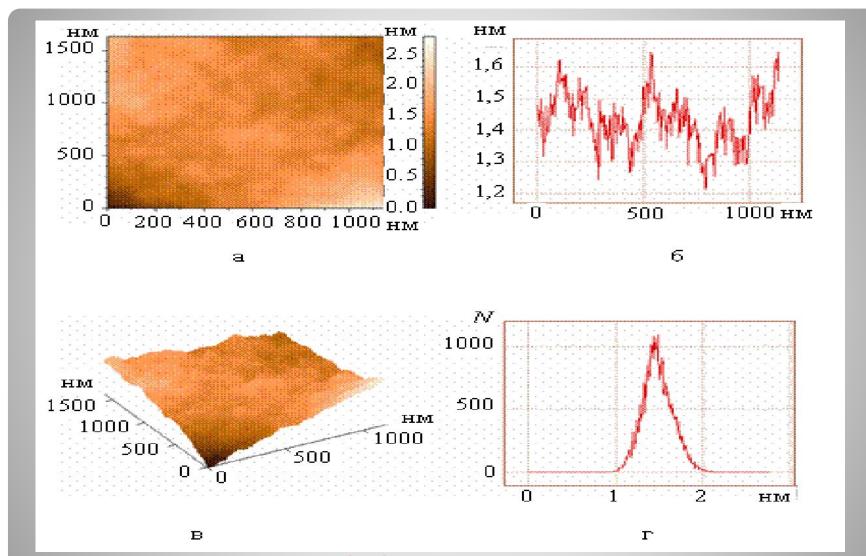
Недостатки: большое число этапов химической отмывки (12), значительные объемы потребления химических реагентов и деионизованной воды, расход чистого воздуха и газов в ЧПП. Кроме того, использование химических смесей при высокой температуре способствует быстрому испарению жидкостей и ухудшению качества растворов.


- Модификация процесса RCA (TRTWC (Total Room Temperature Wet Cleaning) – "жидкостная" химическая очистка при комнатной температуре).
- Сушка пластин (центрифугирование с обдувом теплым азотом; очистка и сушка подложек в паровой фазе; метод сушки горячим воздухом и горячим азотом; сушка по методу Марангони поверхность кремниевой пластины контактирует с водой в присутствии летучего и хорошо растворимого в воде соединения, например, изопропилового спирта.).

- Погружение в растворы.
- Мегазвуковая обработка.
- Ультразвуковая обработка.
- Обработка струей жидкости высокого давления.
- Аэрозольно-капельное распыление растворов.
- Кистевая обработка.


Методы проведения "жидкостной" химической обработки


Зависимость уровня остаточных загрязнений на поверхности Si пластин диаметром 150 мм от количества циклов обработки различными методами: 1 погружением в растворы по стандартной методике; 2 – с применением мегазвуковой энергии в растворе $NH_4OH/H_2O_2/H_2O$; 3 – аэрозольно-капельным распылением растворов H_2SO_4/H_2O_2 ; H_2O/HF ; $NH_4OH/H_2O_2/H_2O$; $HCI/H_2O_2/H_2O$


Поверхность исходной Si пластины: а – внешний вид поверхности образца; профиль шероховатости поверхности подложки; в – изометрическое изображение поверхности образца; г - распределение неровностей 25 поверхности по размерам

Поверхность Si пластины после обработки в буферном растворе: а – внешний вид поверхности образца; б – профиль шероховатости поверхности; в – изометрическое изображение поверхности образца; г – распределение неровностей поверхности по размерам

Поверхность Si пластины после обработки методом погружения по стандартной методике в растворы H_2SO_4/H_2O_2 , $NH_4OH/H_2O_2/H_2O$: а – внешний вид поверхности образца; б – профиль шероховатости поверхности; в – изометрическое изображение 27 поверхности образца; г – распределение неровностей поверхности по размерам

Поверхность Si пластины после обработки аэрозольно-капельным распылением растворов H_2SO_4/H_2O_2 ; H_2O/HF ; $NH_4OH/H_2O_2/H_2O$; $HCI/H_2O_2/H_2O$: а – внешний вид поверхности образца; б – профиль шероховатости поверхности; в – изометрическое изображение поверхности образца; г – распределение неровностей поверхности по

Контрольные вопросы по первой теме:

- 1. Расскажите о кристаллической решетке кремния (тип, связь атомов, постоянная решетки, состояние поверхности кремния).
- 2. Какие Вам известны типы загрязнений поверхности кремния?
- 3. Какие Вам известны методы очистки поверхности?
- 4. Как меняется уровень остаточных загрязнений поверхности кремния по мере проведения очистки поверхности?

Список источников литературы по теме:

- 1. Королев М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 1: Технологические процессы изготовления кремниевых интегральных схем и их моделирование / М. А. Королев, Т. Ю. Крупкина, М. А. Ревелева; Под ред. Ю. А. Чаплыгина. 3-е изд., электронное. М.: Бином. Лаборатория знаний, 2015. 400 с.
- 2. Королев М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: Учеб. пособие: В 2-х ч. Ч. 2 : Элементы и маршруты изготовления кремниевых ИС и методы их математического моделирования / М. А. Королев; Под ред. Ю.А. Чаплыгина. 3-е изд., электронное.
- 3. А.А. Голишников, А.Ю. Красюков, С.А. Поломошнов, М.Г. Путря, В.И. Шевяков / Лабораторный практикум «Основы технологии электронной компонентной базы, под ред. Ю.А. Чаплыгина, М., МИЭТ, 2013. 176 с.
- 4. http://www.prokopep.narod.ru/book2/html/glava2.htm

Спасибо за внимание!

Козлов Антон Викторович

Следите за информацией на сайте orioks.miet.ru