IMPLEMENTING |OE

Week 8 IAssis’r. Prof. Rassim Suliyev - SDU 2017

Physical Output

O

O

O

Make things move by controlling motors with Arduino

Servo-motors

Rotary actuator that allows for precise control of angular position

DC-motors

Converts direct current electrical power into mechanical power

Stepper-motors

Divides a full rotation into a number of equal steps

Brushed DC Motors

- Simple devices with two leads connected to brushes (contacts)
1 Control the magnetic field of the coils

' Drives a metallic core (armature)
- Direction of rotation can be reversed by reversing the polarity
- Require a transistor to provide adequate current

- Primary characteristic in selecting a motor is torque

Stator Magnets

1 How much work the motor can do

Windings

F T=BILwcose
‘ Ecios Armature

Commutator

Terminals

Brushless Motors
.

- More powerful and efficient for a given size
-~ Three phases of driving coils

- Require more complicated electronic control

Electronics speed controllers

CW Rotation Elec. Deg. ————>
0 180 360

Wwant [L |

Hanz2 [L

Hans [L [
Hi

\ @? ZA Off —_,—,_l
A Lo

"‘BE";' Iy N
Stator soon |

Hall element
Detects rotor
rotational position

Rotor
Motor case q
(Housing) .

Winding

Permanent i
magnet (copper wire) H2

Magnet that
generates the base flux.

R’ o
AN o

Bearing

Servo Magnetics Inc.
4-Pole Brushless DC Motor
Commutation, drive, and winding timings
Drawing & Animation: Brad Pera

H Decoder Circuit |—

DC Motor Parameters

Direct-drive vs. gearhead — built-in gears or not
Voltage — what voltage it best operates at
Current (efficiency) — how much current it needs to
spin

Speed — how fast it spins

Torque — how strong it spins

Size, shaft diameter, shaft length

DC Motor Characteristics

When the first start up, they draw a lot more
current, up to 10x more

If you “stall” them (make it so they can’t turn), they
also draw a lot of current

They can operate in either direction, by switching
voltage polarity

Usually spin very fast: >1000 RPM

To get slower spinning, need gearing

Driving DC Motor

To drive them, apply a voltage
The higher the voltage, the faster the spinning

Polarity determines which way it rotates

battery DC motor

Can be used as voltage generators

DC motor

Switching Motors with Transistors

Transistors switch big signals with little signals
Since motors can act like generators,

Need to prevent them from generating “kickback”
into the circuit

Can control speed of motor with analogWrite()

+5V

diode +5V
ﬂ_‘ — 4 DC motor (< NADOS
Arduino \M 1)
_ board ‘
line &
pin 9 ———— M\ } TIP120
500 -
I< (green-brown-brown) '5 c e
gnd

schematic symbol |

Driving a Brushed Motor

const int motorPin
const int switchPin

void setup () {

pinMode (switchPin,

pinMode (motorPin, OUTPUT) ;

}
void loop() {

digitalWrite (motorPin, digitalRead(switchPin)) ;

}

¥
00000000 000ao0q)| 0.1
£5 7 DIGITAL == K L pde] LV
| Resistor 3 1h4001 AT o
. Q c Motor
Arduino " Power
o Source
=Xs) e
2M2222 Gnd
I or
TIP102
. Beo_mmc ANALOG
| e FIWNADWDI D e o wt L
N P4
eecscefjocsesef -
b[e
INPUT) ;

Controlling Speed of DC-Motor

000000 - oo00mo0n

MNPOC"IDG P D Ly = oy = O
— e —

22 DIGITAL

Arduino

[]

B Beame o
. ooogn OO

1K Diode _|_
Reslstoré 1N4001 A

s 2
0.1
ﬁ?F

.

Motor
|ij !
b ' Power
Source
e
2N2222 Gnd
or
TIP102
TIP102

const int motorPin = 3;

const int potPin = AOQ;

void setup () {

}

void loop() {
int spd = analogRead (potPin) ;
spd = map(spd, 0, 1023, 0, 255);
analogWrite (motorPin, spd);

}

b
Ce

Servo-Motors

Allow accurately control physical movement
Move to a position instead of continuously rotating
Rotate over a range of O to 180 degrees

Motor driver is built into the servo
Small motor connected through gears
Output shaft drives a servo arm

Connected to a potentiometer to provide position feedback
Continuous rotation servos

Positional feedback disconnected

Rotate continuously clockwise and counter clockwise with
some control over the speed

Servo-Motors
—

Gear Reduction Drive

- i Y Output shaft

=

NI I I I N T
WP P fIr NN

Pot
Errm; B
Motor Amp Pulse to __To Arduino
L Voltage Pin
.
H-Bridge | gr‘iun ;
A

Servo-Motors

Respond to changes
in the duration of a
pulse

Short pulse of 1 ms

will cause to rotate to
one extreme

Pulse of 2 ms will
rotate the servo to
the other extreme

1.5ms 2ms

Tms
— — = —

Typically
20 ms

between
pulses

HA

0 Degrees 90 Degrees 180 Degrees

Servos require pulses different
from the PWM output from
analogWrite

Servo-Motors

Come in all sizes
from super-tiny

to drive-your-car

All have same 3-wire interface

Servos are spec’d by:
weight: 9g
speed: .12s/60deg @ 6V R
torque: 220z/1.5kg @ 6V
voltage: 4.6~6V
size: 21x11x28 mm é&

Servo Control
—

- PWM freq is 50 Hz (i.e. every 20 millisecs)

- Pulse width ranges from 1 to 2 millisecs

q : Ground (0V)
| Power (+5V)

Control (PVWM)

180°

0 degrees 90 degrees 180 degrees

In practice, pulse range can range
from 500 to 2500 microsecs

1000 microsecs I 500 microsecs 2000 microsecs

Servo and Arduino

........

const int servoPin = 7;
const int potPin = AQ;
const int pulsePeriod = 20000; //us
void setup() {
pinMode (servoPin, OUTPUT) ;
}
void loop () {
int hiTime = map (analogRead(potPin), 0, 1023, 600, 2500);
int loTime = pulsePeriod - hiTime;
digitalWrite (servoPin, HIGH); delayMicroseconds (hiTime) ;
digitalWrite (servoPin, LOW); delayMicroseconds (loTime) ;

Use the Servo library

servo.attach(pin[, min][, max]) — attach the servo
pin- the pin number that the servo is attached to

min (optional) - the pulse width, in microseconds,
corresponding to the minimum (O-degree) angle on the
servo (defaults to 544)

max (optional) - the pulse width, in microseconds,
corresponding to the maximum (180-degree) angle on
the servo (defaults to 2,400)

servo.write(angle) — turn the servo arm

angle — the degree value to write to the servo (from O

to 180)

Servo sweeper

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int angle = 0; // variable to store the servo position
void setup () {
myservo.attach(9); // attaches the servo on pin 9 to the servo object

}
void loop () {

for (angle = 0; angle < 180; angle += 1){ // goes from 0 degrees to 180
myservo.write (angle); //tell servo to go to position in variable 'angle'
delay (20); // waits 20ms between servo commands

}
for (angle = 180; angle >= 1; angle -= 1){ // goes from 180 degrees to 0

myservo.write (angle) ; Signal (White)
delay (20) ;
i ipi————————- - —— SEWO
} rﬁggg:gc\g ggg\vmmgg _Jl((mneam +5V(R€d)
} e DIGITAL e 6nd /
\ (Black)
' Arduino ” o
+
(

e I
— Pen_TE ANALOG
- (\) [/_\\' §ga5\§§ Or—rNT:Yy

~ EIIFKI'D O0000a ¢ O
Servo

Controlling angle with pot
—

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin
void setup () {
myservo.attach(9); // attaches the servo on pin 9 to the servo object

}
void loop () {
val = analogRead (potpin); // reads the value of the potentiometer
val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo
myservo.write(val); // sets position
delay (15) ;) 44474%_ v
} - 00000000 00000000 =

X OO Connector

13
12
n
10

>

/Signa/ (White)

+5V (Red)

| DIGITAL e nd /
N (Black)

Arduino £

- 5; *éé.s ANALOG |
U U ERAAIDE D
eeneoflroeee

O

a/

\h

10K

Pot

Servo

Stepper Motors

Rotate a specific number of degrees in response to
control pulses

Number of degrees for a step is motor-dependent
Ranging from one or two degrees per step to 30
degrees or more

Two types of steppers
Bipolar - typically with four leads attached to two coils

Unipolar - five or six leads attached to two coils

Additional wires in a unipolar stepper are internally
connected to the center of the coils

Stepper Motors

Unipolar drivers always energize the phases in the same way
Single "common" lead, will always be negative.
The other lead will always be positive

Disadvantage - less available torque, because only half of the coils
can be energized at a time

Bipolar drivers work by alternating the polarity to phases

All the coils can be put to work

®© 1@
[mm

Bipolar Unipolar (8 wire)

Stepper Motors

This motor only joins
the common wires of 2
paired phases. These
two wires can be joined

All of the common
coil wires are tied
together internally
and brought out as a to create a 5-wire

Sth wire. This motor unipolar motor. Or you
m can only be driven [WYTWY] just can ignore them
| as a unipolar motor. and treat it like a bipolar

Unipolar (5 wire) Unipolar (6 wire) motor!

It can be driven in several ways:
*4-phase unipolar - All the common wires are connected
together - just like a 5-wire motor.
«2-phase series bipolar - The phases are connected in series -
just like a 6-wire motor.
«2-phase parallel bipolar - The phases are connected in
parallel. This results in half the resistance and inductance - but

‘ l‘ I requires twice the current to drive. The advantage of this wiring
is higher torque and top speed.

Unipolar (8 wire)

Driving a Unipolar Stepper Motor

const int stepperPins[4] = {2, 3, 4, 5};
int delayTime = 5;
void setup() {
for(int i=0; i<4; i++)
pinMode (stepperPins[i], OUTPUT) ;

Unipolar Stepper — 4 wire

To
Stepper
+V
r 3

Gnd Power
A

A RESET] m
i L
5V
R Gnd |
%ﬁ { 16 15 14 13
D oum ouT? ouT3 ouT4
91 .y
U T o oo ULN2003
I IN1 IN2 IN3 IN4
N ; 1 2 3 3
5
; | — |
0 e
™10
RX 003

void loop () {

digitalWrite (stepperPins|[0],
digitalWrite (stepperPins[1],
digitalWrite (stepperPins|[2],
digitalWrite (stepperPins|[3],
delay (delayTime) ;

digitalWrite (stepperPins|[0],
digitalWrite (stepperPins[1],
digitalWrite (stepperPins|[2],
digitalWrite (stepperPins|[3],
delay (delayTime) ;

digitalWrite (stepperPins|[0],
digitalWrite (stepperPins[1],
digitalWrite (stepperPins|[2],
digitalWrite (stepperPins|[3],
delay (delayTime) ;

digitalWrite (stepperPins|[0],
digitalWrite (stepperPins[1],
digitalWrite (stepperPins|[2],
digitalWrite (stepperPins|[3],
delay (delayTime) ;

HIGH) ;
LOW) ;
LOW) ;
LOW) ;

LOW) ;
HIGH) ;
LOW) ;
LOW) ;

LOW) ;
LOW) ;
HIGH) ;
LOW) ;

LOW) ;
LOW) ;
LOW) ;
HIGH) ;

Driving a Bipolar Stepper Motor

FOUFp”]“”nngt0L293PLBndge const int stepperPins[4] = {2, 3, 4, 5};
- : int delayTime = 5;
void setup() {
KESET for (int i=0; i<4; i++)
A 3V3 III pinMode (stepperPins[i], OUTPUT) ;
SV
G = 14 }
R in U OUT2 OUT3 OUT4 void loop() {
+—164 yss VS +8 W digitalWrite (stepperPins[0], LOW) ;
D] 9+ ENB digitalWrite (stepperPins[1l], HIGH) ;
1= ENA 1293 To digitalWrite (stepperPins[2], HIGH) ;
U 4= GND H-Bridge SSW” digitalWrite (stepperPins[3], LOW) ;
—5=GND e delay (delayTime) ;
I —12= GND e Gnd digitalWrite (stepperPins[0], LOW) ;
; .L, 13-GND T T T 1 - digitalWrite (stepperPins[1l], HIGH) ;
N 6 i f i 10 15 - digitalWrite (stepperPins[2], LOW) ;
() i | | digitalWrite (stepperPins[3], HIGH) ;
g delay (delayTime) ;
TX 1 digitalWrite (stepperPins[0], HIGH) ;
L o) digitalWrite (stepperPins[1l], LOW) ;
digitalWrite (stepperPins[2], LOW) ;
Step wire 1 wire 2 wire 3 wire 4 digitalWrite (stepperPins[3], HIGH) ;
: - delay (delayTime) ;
1 High low high low digitalWrite (stepperPins[0], HIGH) ;
< . .) digitalWrite (stepperPins[1], LOW);
2 low high high low digitalWrite (stepperPins[2], HIGH) ;
3 loi hish b high digitalWrite (stepperPins[3], LOW) ;

delay (delayTime) ;
4 high low low high }

Arduino Stepper Library

Allows to control unipolar or bipolar stepper motors
stepper(steps, pinl, pin2, pin3, pin4) — attach and initialize
stepper

steps: number of steps in one revolution of motor

pinl, pin2, pin3, pin4: 4 pins attached to the motor

setSpeed(rpms) - Sets the motor speed in rotations per minute
(RPMs)

step(steps) - Turns the motor a specific number of steps,
positive to turn one direction, negative to turn the other

This function is blocking

wait until the motor has finished moving before passing control to the
next line in sketch

Arduino Stepper Library

#include <Stepper.h>
const int stepsPerRevolution = 200; // change this to fit the number of steps
Stepper myStepper (stepsPerRevolution, 2, 3, 4, 5);
void setup () {
myStepper.setSpeed (60) ;
Serial .begin(9600) ;
}
void loop() {
Serial.println("clockwise") ;
myStepper.step (stepsPerRevolution) ;
delay (5) ;
Serial.println("counterclockwise") ;
myStepper.step (-stepsPerRevolution) ;
delay (5) ;

