
IMPLEMENTING IOE

Assist. Prof. Rassim Suliyev - SDU 2017Week 8

Physical Output

◻ Make things move by controlling motors with Arduino

◻ Servo-motors
� Rotary actuator that allows for precise control of angular position

◻ DC-motors
� Converts direct current electrical power into mechanical power

◻ Stepper-motors
� Divides a full rotation into a number of equal steps

Brushed DC Motors

◻ Simple devices with two leads connected to brushes (contacts)
� Control the magnetic field of the coils

� Drives a metallic core (armature)

◻ Direction of rotation can be reversed by reversing the polarity

◻ Require a transistor to provide adequate current

◻ Primary characteristic in selecting a motor is torque
� How much work the motor can do

Brushless Motors

◻ More powerful and efficient for a given size

◻ Three phases of driving coils

◻ Require more complicated electronic control
� Electronics speed controllers

DC Motor Parameters

◻ Direct-drive vs. gearhead – built-in gears or not

◻ Voltage – what voltage it best operates at

◻ Current (efficiency) – how much current it needs to
spin

◻ Speed – how fast it spins

◻ Torque – how strong it spins

◻ Size, shaft diameter, shaft length

DC Motor Characteristics

◻ When the first start up, they draw a lot more
current, up to 10x more

◻ If you “stall” them (make it so they can’t turn), they
also draw a lot of current

◻ They can operate in either direction, by switching
voltage polarity

◻ Usually spin very fast: >1000 RPM

◻ To get slower spinning, need gearing

Driving DC Motor

◻ To drive them, apply a voltage

◻ The higher the voltage, the faster the spinning

◻ Polarity determines which way it rotates

◻ Can be used as voltage generators

Switching Motors with Transistors

◻ Transistors switch big signals with little signals

◻ Since motors can act like generators,

◻ Need to prevent them from generating “kickback”
into the circuit

◻ Can control speed of motor with analogWrite()

Driving a Brushed Motor

const int motorPin = 3;
const int switchPin = 2;
void setup() {
 pinMode(switchPin, INPUT);
 pinMode(motorPin, OUTPUT);
}
void loop() {
 digitalWrite(motorPin, digitalRead(switchPin));
}

Controlling Speed of DC-Motor

const int motorPin = 3;
const int potPin = A0;
void setup() {
}
void loop() {
 int spd = analogRead(potPin);
 spd = map(spd, 0, 1023, 0, 255);
 analogWrite(motorPin, spd);
}

Servo-Motors

◻ Allow accurately control physical movement

◻ Move to a position instead of continuously rotating

◻ Rotate over a range of 0 to 180 degrees

◻ Motor driver is built into the servo
� Small motor connected through gears
� Output shaft drives a servo arm
� Connected to a potentiometer to provide position feedback

◻ Continuous rotation servos
� Positional feedback disconnected
� Rotate continuously clockwise and counter clockwise with

some control over the speed

Servo-Motors

Servo-Motors

◻ Respond to changes
in the duration of a
pulse
� Short pulse of 1 ms

will cause to rotate to
one extreme

� Pulse of 2 ms will
rotate the servo to
the other extreme

Servos require pulses different
from the PWM output from

analogWrite

Servo-Motors

◻ Come in all sizes
� from super-tiny
� to drive-your-car

◻ All have same 3-wire interface

◻ Servos are spec’d by:
� weight: 9g
� speed: .12s/60deg @ 6V
� torque: 22oz/1.5kg @ 6V
� voltage: 4.6~6V
� size: 21x11x28 mm

Servo Control

◻ PWM freq is 50 Hz (i.e. every 20 millisecs)

◻ Pulse width ranges from 1 to 2 millisecs

In practice, pulse range can range
from 500 to 2500 microsecs

Servo and Arduino

const int servoPin = 7;
const int potPin = A0;
const int pulsePeriod = 20000; //us
void setup() {
 pinMode(servoPin, OUTPUT);
}
void loop() {
 int hiTime = map(analogRead(potPin), 0, 1023, 600, 2500);
 int loTime = pulsePeriod - hiTime;
 digitalWrite(servoPin, HIGH); delayMicroseconds(hiTime);
 digitalWrite(servoPin, LOW); delayMicroseconds(loTime);
}

Use the Servo library

◻ servo.attach(pin[, min][, max]) – attach the servo
� pin- the pin number that the servo is attached to
� min (optional) - the pulse width, in microseconds,

corresponding to the minimum (0-degree) angle on the
servo (defaults to 544)

� max (optional) - the pulse width, in microseconds,
corresponding to the maximum (180-degree) angle on
the servo (defaults to 2,400)

◻ servo.write(angle) – turn the servo arm
� angle – the degree value to write to the servo (from 0

to 180)

Servo sweeper

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int angle = 0; // variable to store the servo position
void setup(){
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop(){
 for(angle = 0; angle < 180; angle += 1){ // goes from 0 degrees to 180
 myservo.write(angle); //tell servo to go to position in variable 'angle'
 delay(20); // waits 20ms between servo commands
 }
 for(angle = 180; angle >= 1; angle -= 1){ // goes from 180 degrees to 0
 myservo.write(angle);
 delay(20);
 }
}

Controlling angle with pot

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin
void setup(){
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop(){
 val = analogRead(potpin); // reads the value of the potentiometer
 val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo
 myservo.write(val); // sets position
 delay(15);
}

Stepper Motors

◻ Rotate a specific number of degrees in response to
control pulses

◻ Number of degrees for a step is motor-dependent
� Ranging from one or two degrees per step to 30

degrees or more

◻ Two types of steppers
� Bipolar - typically with four leads attached to two coils
� Unipolar - five or six leads attached to two coils

◻ Additional wires in a unipolar stepper are internally
connected to the center of the coils

Stepper Motors

◻ Unipolar drivers always energize the phases in the same way
� Single "common" lead, will always be negative.

� The other lead will always be positive

� Disadvantage - less available torque, because only half of the coils
can be energized at a time

◻ Bipolar drivers work by alternating the polarity to phases
� All the coils can be put to work

Stepper Motors

All of the common
coil wires are tied
together internally
and brought out as a
5th wire. This motor
can only be driven
as a unipolar motor.

This motor only joins
the common wires of 2
paired phases. These
two wires can be joined
to create a 5-wire
unipolar motor. Or you
just can ignore them
and treat it like a bipolar
motor!

It can be driven in several ways:
•4-phase unipolar - All the common wires are connected
together - just like a 5-wire motor.
•2-phase series bipolar - The phases are connected in series -
just like a 6-wire motor.
•2-phase parallel bipolar - The phases are connected in
parallel. This results in half the resistance and inductance - but
requires twice the current to drive. The advantage of this wiring
is higher torque and top speed.

Driving a Unipolar Stepper Motor

const int stepperPins[4] = {2, 3, 4, 5};
int delayTime = 5;
void setup() {
 for(int i=0; i<4; i++)
 pinMode(stepperPins[i], OUTPUT);
}

void loop() {
 digitalWrite(stepperPins[0], HIGH);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], HIGH);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], HIGH);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], HIGH);
 delay(delayTime);
}

Driving a Bipolar Stepper Motor

const int stepperPins[4] = {2, 3, 4, 5};
int delayTime = 5;
void setup() {
 for(int i=0; i<4; i++)
 pinMode(stepperPins[i], OUTPUT);
}
void loop() {
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], HIGH);
 digitalWrite(stepperPins[2], HIGH);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], HIGH);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], HIGH);
 delay(delayTime);
 digitalWrite(stepperPins[0], HIGH);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], HIGH);
 delay(delayTime);
 digitalWrite(stepperPins[0], HIGH);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], HIGH);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
}

Arduino Stepper Library

◻ Allows to control unipolar or bipolar stepper motors

◻ stepper(steps, pin1, pin2, pin3, pin4) – attach and initialize
stepper
� steps: number of steps in one revolution of motor

� pin1, pin2, pin3, pin4: 4 pins attached to the motor

◻ setSpeed(rpms) - Sets the motor speed in rotations per minute
(RPMs)

◻ step(steps) - Turns the motor a specific number of steps,
positive to turn one direction, negative to turn the other
� This function is blocking

� wait until the motor has finished moving before passing control to the
next line in sketch

Arduino Stepper Library

#include <Stepper.h>
const int stepsPerRevolution = 200; // change this to fit the number of steps
Stepper myStepper(stepsPerRevolution, 2, 3, 4, 5);
void setup() {
 myStepper.setSpeed(60);
 Serial.begin(9600);
}
void loop() {
 Serial.println("clockwise");
 myStepper.step(stepsPerRevolution);
 delay(5);
 Serial.println("counterclockwise");
 myStepper.step(-stepsPerRevolution);
 delay(5);
}

