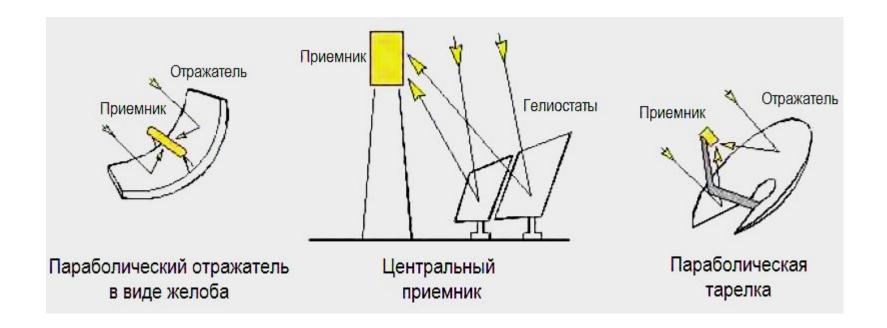

«СЭС»

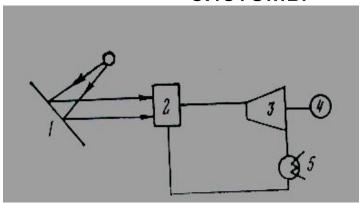
Технологии получения электрической энергии за счет солнечной энергии:

- 1. Посредством промежуточного теплового процесса с помощью термодинамических солнечных станций
- 2. Напрямую с помощью фотоэлектрических преобразователей.

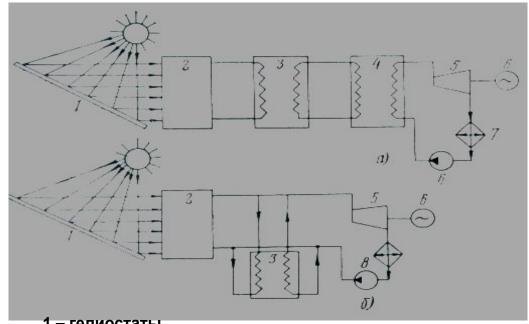

По способу производства тепла

термодинамические СЭС используют:

- солнечные концентраторы;
- солнечные пруды.


Основные способы концентрации СЭ на теплоприемник:

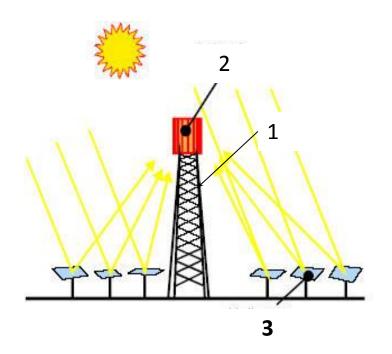
- рассредоточенные теплоприемники: тарельчатые СЭС и СЭС с параболоцилиндрическими концентраторами;
- центральный теплоприемник башенные СЭС

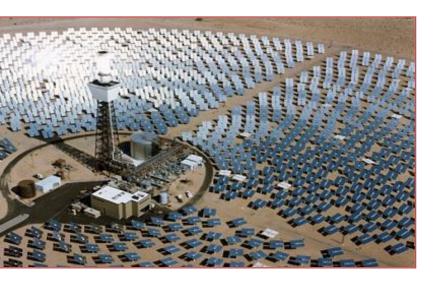

Упрощенная технологическая схема башенной солнечной электростанции

1) без аккумулирующей системы

- 1 гелиостаты,
- 2 приемник (котел),
- 3 паровая турбина,
- 6 генератор,
- 5 конденсатор

2) с аккумулирующей системой


- 1 гелиостаты,
- 2 приемник (котел),
- 3 тепловой аккумулятор,
- 4 теплообменник.
- 5 паровая турбина,
- 6 генератор,
- 7 конденсатор,
- 8 насос


В качестве теплоносителя используется химическое вещество: натрий, диссоциированный аммиак и др.

Особенности использования концентраторов:

- 1. Концентраторы необходимо непрерывно ориентировать на Солнце (системы слежения: одноосные, двухосные)
- 2. Высокая стоимость конструкции.
- 3. Необходима постоянная очистка поверхности.
- 4. Способны нагревать теплоноситель до высоких температур.

Башенные СЭС

Основные сооружения БСЭС:

1 – башня,

2 – котел-теплоприемник СИ,

3Те**перию фтанъ**приемнике достигают

от 538 до 1482 °C.

КПД БСЭС в диапазоне 12%-20 % Мощность БСЭС во многом определяется высотой башни с котлом –приемником СИ.

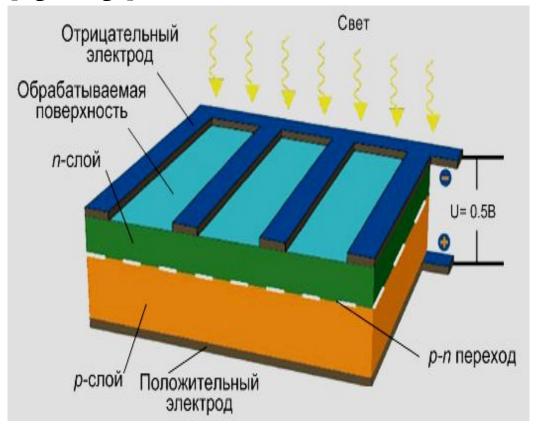
Для мощности БСЭС в 50÷100 МВт требуется башня высотой 200÷300 м с используемой площадью полем гелиостатов в 2÷3 км² (около 15÷25 тысяч).

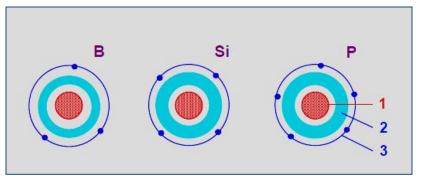
Характеристики солнечных тепловых электростанций

Характеристики	Параболический концентратор	"Тарелка"	Электростанция башенного типа
Мощность	30-320 МВт	5-25 МВт	10-100 МВт
Рабочая температура (С)	390	750	565
Пиковый КПД	20%	29.4%	23%
Практический годовой КПД	11%-16%	12%-25%	12%-20%
Риск, связанный с развитием технологии	Низкий	Высокий	Средний
Аккумулирование тепла	Ограничено	Аккумулятор	Да
Гибридные системы	Да	Да	Да
Стоимость, доллар/Вт	2,7-4,0	1,3-12,6	2,5-4,4

Основные недостатки термодинамических СЭС с концентраторами

- высокая стоимость конструкции;
- необходимость постоянной очистки отражающих поверхностей от пыли;
- работа только в светлое время суток, а следовательно, потребность в аккумулирующих системах;
- большие энергозатраты на привод системы слежения за ходом Солнца.





Фотоэлектрический эффект – заключается в возможности прямого преобразования СИ в электричество в некоторых материалах, называемых полупроводниками.

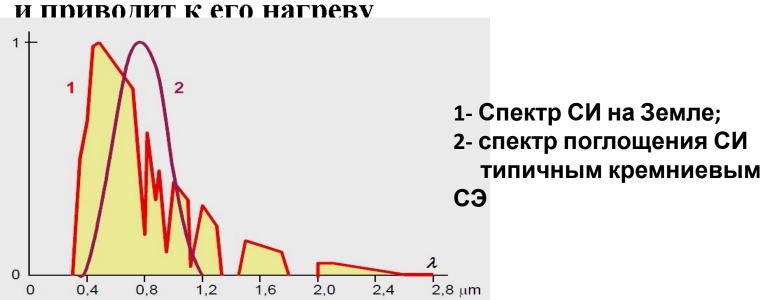
Структура солнечного элемента

Принципиальное устройство атомов бора (или алюминий), кремния и фосфора (или мышьяка):

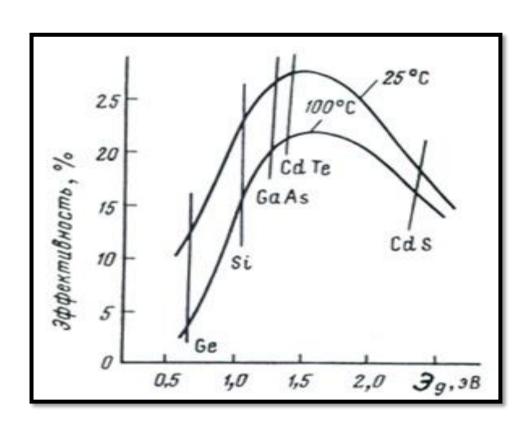
1-ядро; 2-внутренние электронные слои; 3-внешний электронный слой

Ширина запрещенной зоны *S* для различных полупроводниковых элементов

Элемент	Группа	S·10 ¹⁹ , Дж	Элемент	Группа	S·10 ¹⁹ , Дж
	Простых				
Бор	III	1,76	Мышьяк	V	1,9
Углерод (алмаз)	IV	8,5	Сурьма	V	0,19
Кремний	IV	1,8	Cepa	VI	4
Германий	IV	1,2	Селен	VI	2,7
Олово	IV	0,13	Теллур	VI	0,58
Фосфор	V	2,4	Иод	VI	0,2
Сложных					
Арсенид-галли	й (GaAs)	2,4			
Кадмий-селе	н (CdS)	3,8			


К полупроводниковым относятся материалы, обладающие удельным электросопротивлением в пределах 10^{-5} - 10^{-8} Oм·м.

Энергия фотонов $\mathcal{F}_{\phi}=h\cdot\gamma$, где γ , \mathbf{c}^{-1} — частота данной волны СИ, h — постоянная Планка равна $6,63\cdot10^{-34}$ Дж·с.


 \mathcal{F}_y – энергетический уровень электрона кристалла.

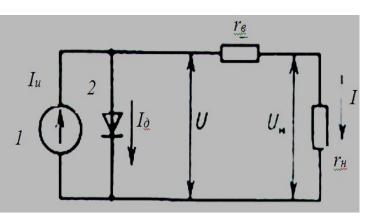
Если $\mathcal{G}_{\phi} > \mathcal{G}_{y}$, то электрон кристалла покидает свой уровень и образует "дырку" в кристалле. Если $\mathcal{G}_{\phi} < \mathcal{G}_{y}$, то СИ приводит только к нагреву СЭ.

Предельная энергия фотонов - когда дальнейшее увеличение \mathcal{G}_{ϕ} не может более привести к росту отдачи СЭ

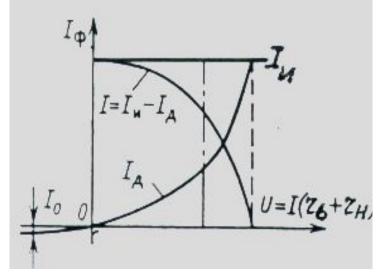
Полоса поглощения и эффективность СЭ

Максимальная эффективность однослойных СЭ в зависимости от *t* ⁰С и его материала:

Ge – германий; Si – кремний; GaAs – арсенид галлия; CdTe – теллурид-кадмий; CdS – кадмий-селен


Полоса поглощения характеризует предельную энергию фотонов света, которая используется для получения фототока.

Полоса поглощения СЭ зависит:


- от основного материала СЭ;
- •количества и толщины слоев полупроводника;
- •их расположения по отношению к падающему СИ;
- •лигирующих материалов и т.

^{ч.} Эффективность СЭ

$$\eta = \frac{\exists npouse}{\exists ceema}$$

Схема замещения СЭ

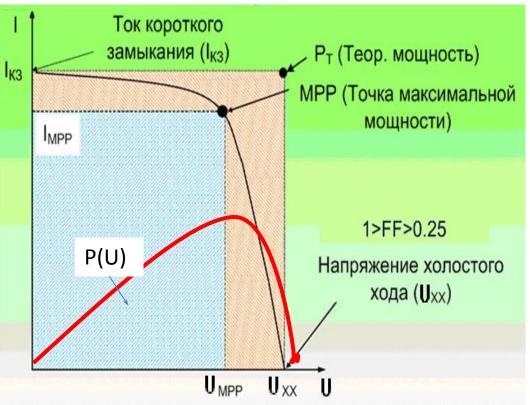
Исходные характеристики

СЭ: $I_{H}(U)$ — источника тока; $I_{\partial}(U)$ — диода; ВАХ СЭ - I(U) при R=const

Электрическая схема замещения СЭ

$$I = I_u - I_o = I_u - I_o (exp(\frac{\alpha \cdot U}{A}) - 1),$$

где ток I_u , A - определяется током КЗ СЭ при R $(Bm/m^2)=const$, т.е. $I_u=I_{\phi}$; I_o , A - ток насыщения равный наибольшему значению обратного тока СЭ (для кремния $I_o\approx 10^{-7}$ A/m²); $A\geq I$ (обычно от 1-3) — безразмерный электрический коэффициент, определяемый технологическими особенностями СЭ; параметр α определяется по формуле:


$$\alpha = \frac{e^0}{k \cdot T^0}$$
,

где e^{θ} – заряд электрона; k – постоянная Больцмана; T^{θ} – температура в градусах Кельвина ($T^{\theta}K=273^{\theta}+t^{\theta}C$). Определение U_{H} , B по формуле:

$$m{U}_{_{\!H}} = m{U} \cdot m{I} imes m{r}_{_{\!B}} = rac{m{A}}{m{\alpha}} m{In} (rac{m{I}_{_{\!\!m{\phi}}} - m{I}}{m{I}_{_{\!\!o}}} + m{1}) \cdot m{I} imes m{r}_{_{\!\!B}},$$
 а также $N_{C\!\!\!\!-\!\!\!\!-}$ Вт: $N_{C\!\!\!\!-\!\!\!\!-} = m{U}_{_{\!\!H}} (m{I}) \cdot m{I}.$

Вольт-амперная характеристика

Коэффициент заполнения ВАХ:

$$FF = \frac{U_{MPP} \times I_{MPP}}{U_{xx} \times I_{xx}}$$

Значения FF

- для кристаллического кремния -73%-80%,
- для тонкопленочных СЭ 60%-68%;
- для арсенида-галлия 84%-89%.

Характеристическое сопротивление

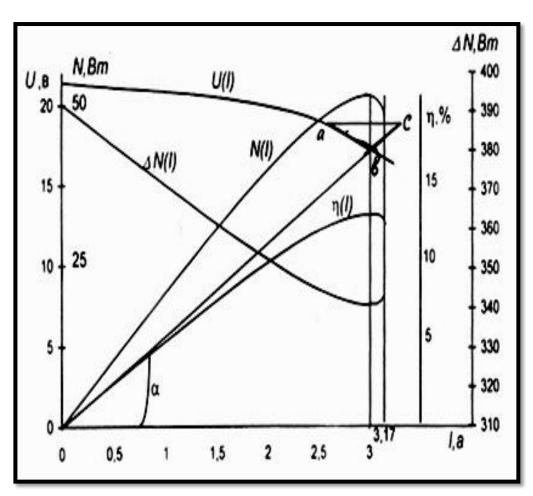
$$R_{x} = \frac{U_{\text{MAPP}}}{I_{\text{MAPP}}} = \frac{U}{I}$$

Характерные точки на ВАХ:

Точка XX:
$$r_H \rightarrow \infty$$
; $U_H = U_H^{max} = U_{xx}$; $I = 0$

Точка К3:
$$r_H \to 0$$
; $I = I^{max} = I_{K3}$; $U_H = U_{K3} = 0$.

ВАХ приводится для стандартных условий:


 $R=1000 \text{ Bm/m}^2$;

 $t^{0}C=25^{0}C;$

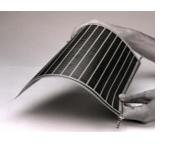
оптическая масса атмосферы АМ1.5.

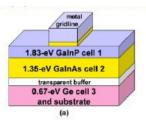
Энергетические характеристики СЭ

В неявном виде можно представить в виде некоторой многомерной зависимости $F_{CG} = F_{CG} (U_{\mu}, I, R, T^0, материал и конструкция СЭ).$

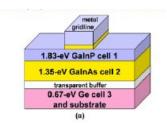
КПД СЭ определяется по формуле

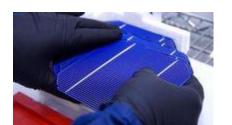
$$\eta(I) = \frac{N_{C\ni}(I)}{N^{noo}(R)} = \frac{N^{noo}(R) - \Delta N(I)}{N^{noo}(R)},$$

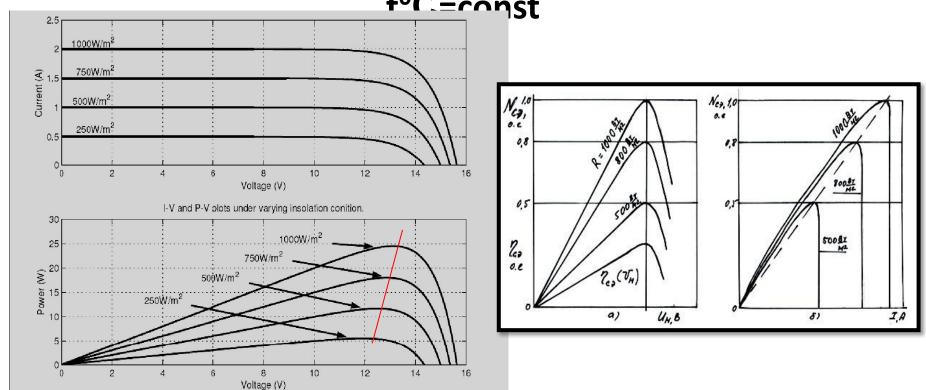

где $N^{no\partial}(R)$ определяется по формуле:


$$N^{noo}(R) = R \cdot S \cdot K_{npon},$$

где R, $Bт/м^2$ – мощность СИ на ПП; $S(M^2)$ - площадь СЭ; K_{npon} , о.е. – коэффициент пропускания защитного слоя.

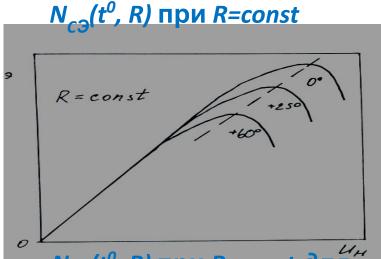




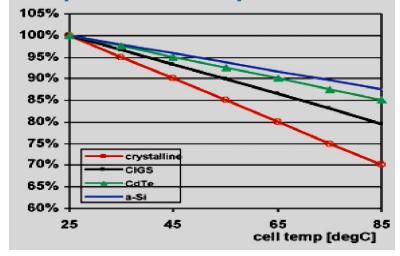

Основные влияющие факторы на эффективность СЭ:

- •Интенсивность солнечного излучения R;
- •Температура окружающей среды т⁰;
- •Материана фитерхнологии СЗ
- материал кремний: монокристаллический, поликристаллический, аморфный, одно- и многослойные СЭ на основе тонких пленок; с горизонтальными и вертикальными слоями.

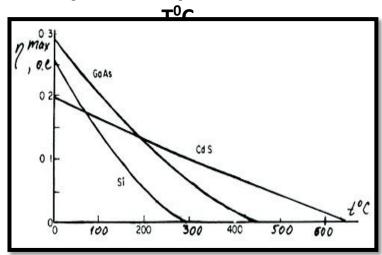
Влияние интенсивности СИ на энергетические характеристики СЭ при +⁰C=const



Например, для СЭ типа SPP1.1 (Германия):

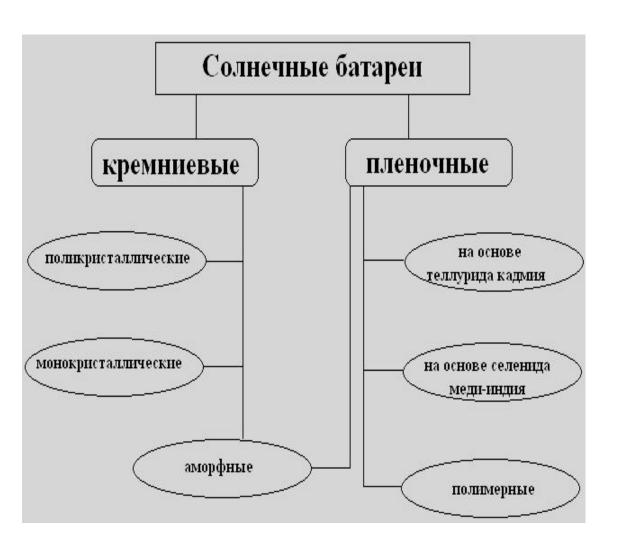

$$N^{max}(R) = N^{max}(1000) R/1000$$
,

где N^{max} (1000) — пиковая мощность СМ при $R=1000~Bm/{\rm M}^2$; N^{max} (R) — пиковая мощность СМ при $R\neq 1000~Bm/{\rm M}^2$.


Влияние температуры на энергетические характеристики СЭ *ихх* ↓,

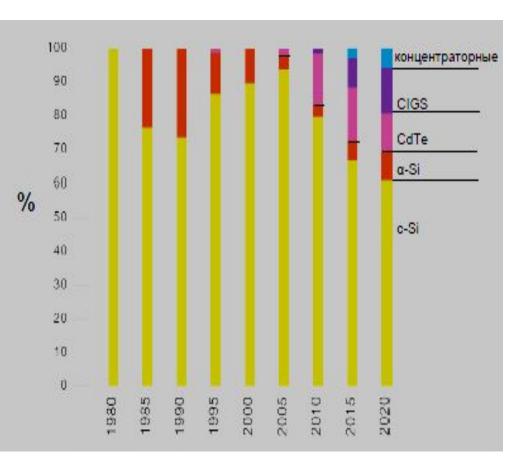
N_{c9}(t⁰, R) при R=const для разных материалов

⁻ η^{max} СЭ из разных материалов при изменении


Значения температурных коэффициентов КПД для различных технологий и материалов СЭ:

marriopaarioo oo:			
-для кристаллического кремния			
	0,4-0,45%/K;		
-для аморфного кремния	0,2 -0,23 %/K;		
-для кадмий-теллура	0,2 0,23 /0,1X,		
	0,24-0,25 %/K;		

- для селенид меди-индий-галлия


0,32-0,36 %/K

Классификация технологий СЭ

Три поколения ФЭП:

- ФЭП первого поколения на основе пластин кристаллического кремния;
- ФЭП второго поколения на основе тонких пленок; Развитие каскадных (тандемных) СЭ
- ФЭП третьего поколения на основе полимерных материалов.

Изменения «доли» технологий 1 и 2 поколения различных типов ФЭП и прогноз до 2020 г [Historical data (until2009) based onNavigant Consulting based on EPIA analysis]

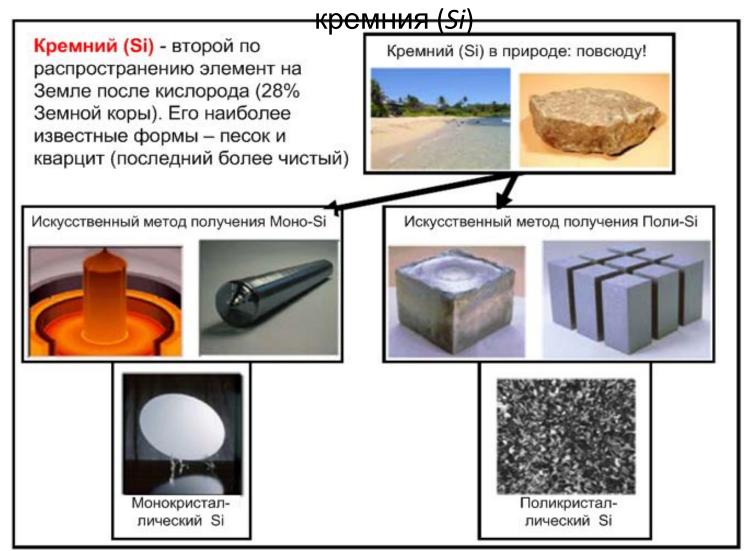
поколения была обусловлена:

- Потребностями в снижении стоимости солнечных батарей.
- Необходимостью в улучшении производительности и технических характеристик.

Разработка ФЭП третьего поколения была вызвана:

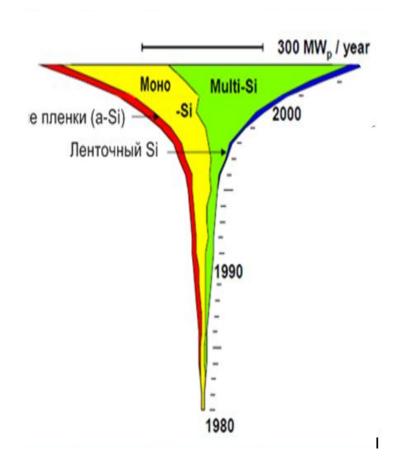
- Потребностями в упрощении технологического процесса и соответственно снижение стоимости производства.
- Использование нетоксичных материалов

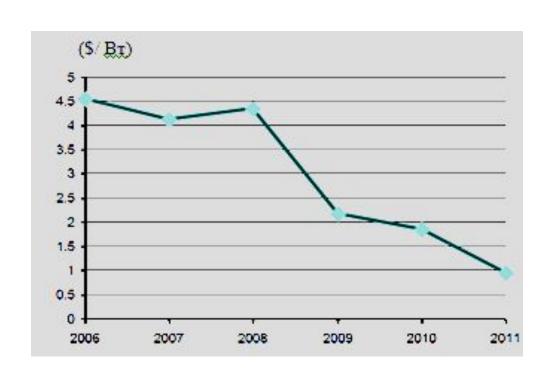
Разработка каскадных многослойных ФЭП:


• Повышение КПД

КПД разных солнечных элементов, полученные в лабораторных условиях [Joar Johansaon. Modelling and simulation of CIGS solar cell modules.Master thesis. 2007]

Тип солнечного элемента	Коэффициент фотоэлектрического преобразования, %		
Кремниевые солнечные батареи			
Si (монокристаллический)	24,7		
Si (поликристаллический)	20,3		
Si (аморфный)	9,5		
Солнечные батареи на основе соединения элементов III и V группы (III-V)			
GaAs (монокристаллический)	25,1		
GaAs (тонкопленочный)	24,5		
GaAs (поликристаллический)	18,2		
InP (монокристаллический)	21,9		
Тонкие пл	енки		
CIGS (медь, индий, галлий, селен) 19,9			
CdTe (кадмий, теллур)	16,5		
Органические солн	ечные батареи		
Органический полимер	5,15		
Многослойные солнечные батареи			
GaInP/GaAs/Ge	32,0		
GaInP/GaAs	30,3		
GaAs/CIS (тонкопленочный)	25,8		
a-Si/mc-Si (тонкий субмодуль)	11,7		


ФЭП первого поколения


Более 80% СЭ, изготавливаемых по всему миру состоят из полупроводникового материала

Развитие мирового фотоэлектричества на базе кремния

Динамика стоимости кремниевых СМ производства Китай

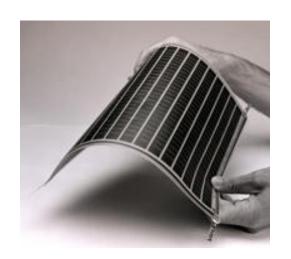
Сравнение разных технологий использования полупроводникового

Материал/Технология производства	материала кремния Преимущества, недостатки		
Монокристаллический кремний Искусственный метод получения методом польского ученого Чохральского (изобретен в 1918 г.), температура производства- 1400 °С Поликристаллический	Преимущества: - КПД преобразования энергии до 20 %. - Толщина 250-300 мкм - Высокая надежность для находящихся на открытом воздухе энергоприменений. - Недостатки: - Высокие требования к чистоте материала (до 99.99%) - Сложности при обработке полученных кристаллов: резка, шлифовка Преимущества:		
кремний «Выращивание ленты кремния» с требуемой толщиной для создания СЭ, температура производства- 800-1000°С	 КПД преобразования энергии около 15 % Прочнее, чем монокристаллические Могут быть разрезаны на 1/3 толщины монокристаллического Ниже стоимость пластины и менее строгие требования к чистоте материала 		
Аморфный кремний (a-Si) Нанесение на различные недорогие подложки (сталь, стекло и пластмасса) слоя толщиной около 1 мкм	Преимущества: — Высокая светопоглотительная способность, выше, чем у кристаллического кремния — Для создания СЭ необходим слой а-Si толщиной примерно 1 микрометр, — Дешевый способ изготовления: нанесение на различные недорогие подложки; технологический процесс требует низких температур, а значит, меньше энергии и меньше материальных затрат. — Низкий к.п.д. преобразования энергии (5-9 %), — Деградация свойств при наружном использовании (10-15 % потери к.п.д. течение нескольких месяцев воздействия солнечного света).		

Повышение КПД кремниевых фотоэлементов возможно за счет:

- концентраций легирующих добавок с обеих сторон p-n соединения;
 - чистоты полупроводника (до 99,99%);
- пассивация поверхности, улавливание света;
- контакты, занимающие меньше освещаемой площади;
- сложные антиотражающие покрытия.

Преимущества и недостатки СЭ из арсенида галлия (GaAs)


GaAs популярен для космических применений

Преимущества:

- высокий уровень светопоглощения;
- Выше КПД, чем у кристаллического кремния (около 25 30 %)
- высокая жаропрочность делает его лучшим для концентраторных систем, в которых температура ФЭП очень высокая.

Основной недостаток

Дорогая монокристаллическая подложка, на которой GaAs растет (Используется в концентраторных системах, где необходима лишь малая часть GaAs).

ФЭП второго поколения на основе тонких пленок

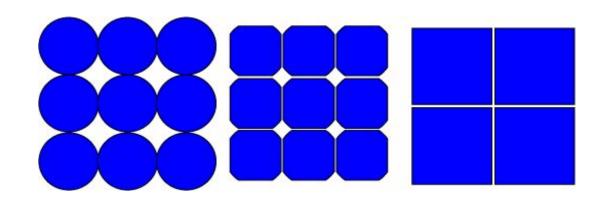
Технология: слой полупроводникового материала нанесен на дешевый вспомогательный слой (стекло, металл, полимерная пленка).

Преимущества данной технологии:

- выше светопоглотительная способность по сравнению с кристаллическими материалами и меньше толщина нанесенного слоя фотоэлектрического материала (от нескольких микрометров до даже меньше, чем микрометр);
- простой, быстрый и дешевый технологический процесс (нанесение фотоэлектрического материала происходит прямым напылением на стекло или металл).

Недостатками таких материалов являются:

- малая эффективность преобразования энергии из-за не монокристаллической структуры;
- большие площади СФЭУ требуют увеличения связанных с площадью затрат, таких как установка.

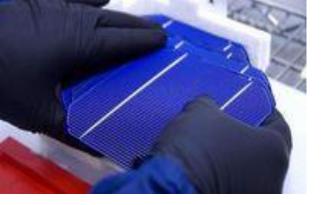

Сравнение материалов СЭ на основе тонких пленок

Материал	Преимущества	Недостатки
Аморфный кремний (a-Si)	 Для создания СЭ необходим слой a-Si толщиной примерно 1 микрометр, a-Si может быть нанесен на различные недорогие подложки (сталь, стекло и пластмасса), технологический процесс требует низких температур, а значит, меньше энергии и меньше материальных затрат. 	- Низкий к.п.д. преобразования энергии (5-9 %), - Деградация свойств при наружном использовании (10-15 % потери к.п.д. в течение нескольких месяцев воздействия солнечного света).
Теллурид кадмия <i>(СdТе)</i> на основе кадмия и теллура	- Высокий уровень светопоглощения) - Относительно простой и дешевый способ производства высокоскоростным напылением, распылением или трафаретной печатью.	 Низкий КПД ФЭП (около 7 %), Нестабильность рабочих параметров элемента и модуля Кадмий является токсичным веществом, при технологическом процессе необходимы дополнительные меры безопасности.
Селенид меди-индия- галлия (CuInGaSe2, или CIS)	- CIS имеет наибольший исследованный КПД преобразования энергии (около 18%) для пленок, - Низкая деградация свойств при наружном использовании, - Один из наиболее светопоглотительных полупроводников.	- Довольно трудоемкий технологический процесс Селенид водорода является чрезвычайно токсичным газом, при технологическом процессе необходимы дополнительные меры безопасности.

Случаи, когда применение фотоэлектрических преобразователей на основе тонкопленочных солнечных элементов обосновано:

- В регионах, где преобладает пасмурная погода.
 - Модули, выполненные по тонкопленочной технологии, лучше поглощают рассеянный свет.
- В странах с жарким климатом.
 - При высокой температуре тонкопленочные солнечные батареи показывают большую эффективность.
- Есть необходимость монтирования панелей в здание либо требуется их использование в качестве дизайнерских задумок или конструкторских решений, например, для отделки фасада.
- Потребность в модулях с частичной прозрачностью до 20%.

Формы СЭ


Цилиндрические солнечные элементы Solyndra (США), 2008 г.

Слой фотоэлемента наносится на поверхность стеклянной трубки, которая помещается в еще одну такую же трубку с электрическими контактами.

В качестве полупроводников для элементов используют медь, галлий, селен и индий.

Преимущества перед плоской формой:

Цилиндрические солнечные батареи за счет своей формы поглощают большее количество света, и, как следствие, имеют больший показатель производительности.

ФЭП третьего поколения на основе полимеров

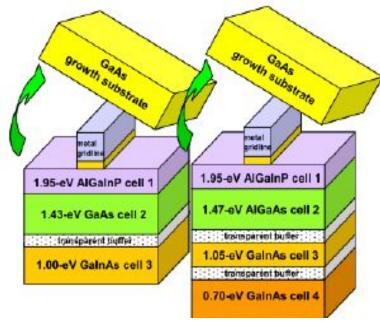
В настоящее время основная часть проектов в области ФЭП третьего поколения находится в стадии исследования.

Полимерные ФЭП имеют на сегодняшний день КПД всего 5-6%.

В качестве светопоглощающих материалов используются органические полупроводники:

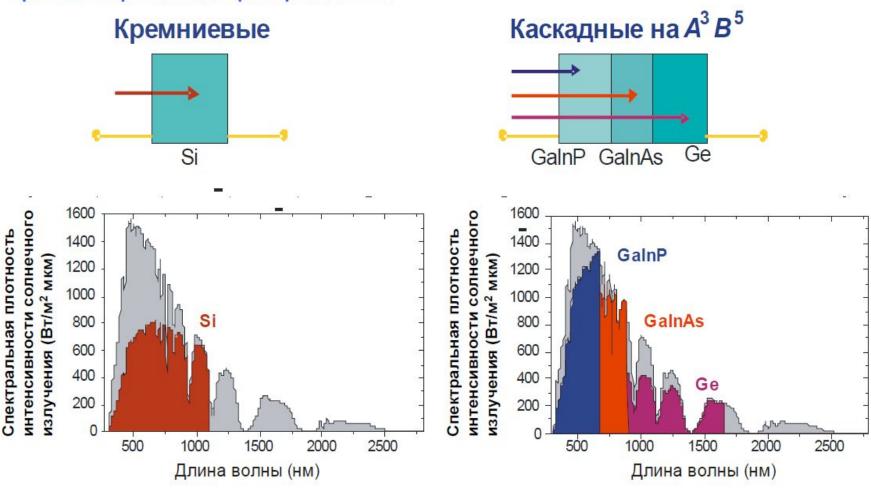
- полифенилен,
- углеродные фуллерены,
- фталоцианин меди и другие.

Толщина пленок составляет 100 нм.


Главные достоинства фотоэлементов из полимеров:

- Низкая стоимость производства.
- Легкость и доступность.
- Отсутствие вредного воздействия на окружающую среду.
- Применяются полимерные батареи в областях, где наибольшее значение имеет механическая эластичность и экологичность утилизации.

Многослойные (каскадные) СЭ



Кол-во	Теоретическое	Ожидаемое	Реализованное
p-n-	значение	значение	значение
переходов	КПД, %	КПД,%	КПД, %
1	30	27	25,1
2	36	33	30,3
3	42	38	31,0
4	47	42	
5	49	44	
бесконечно	до 86		

Трехпереходные и четырехпереходные СЭ Рекордное КПД около 45% (компания Sharp)

Главная причина увеличения эффективности каскадных солнечных элементов по сравнению с кремниевыми - в том, что большая часть энергии солнечного излучения эффективно преобразуется для получения электричества несколькими каскадами фотоэлектрического преобразования.

Увеличение доли спектра солнечного излучения (ярко окрашенные), преобразуемого каскадным ФЭП с тремя p-п переходами в материалах GaInP, GaInAs и Ge (справа), по сравнению с долей солнечного спектра, преобразуемой с помощью кремниевых ФЭП (слева).

Качество солнечных элементов

• Категория А

первая категория качества не допускает никаких, даже самых незначительных дефектов.

• Категория В

вторая категория качества, элементы данной категории всегда имеют визуальные внешние дефекты (разные цвета и оттенки элементов, пятна на элементах).

• Категория С

элементы считаются непригодными для использования в солнечных модулях, имеют сколы, микротрещины, визуальчые вчешче

тегор

3/4 Broken Cell 1/2 Broken Cell

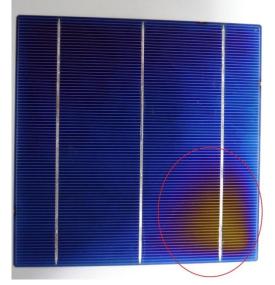
< 1/2 Broken Cell

Контроль качества солнечных элементов

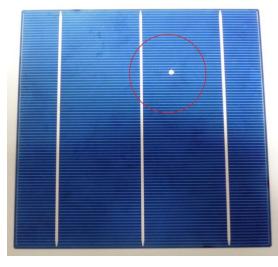
Контроль качества солнечных элементов осуществляется:

- по визуальному контролю;
- тестированию на деградацию солнечных элементов.

Методика тестирования (PID test) на деградацию:


http://www.pi-berlin.com/images/pdf/investorsday/2011/6-PID-Tests.pdf).

Тест проводится в течение 48 часов при температуре 85 градусов, влажности 85 % и потенциале солнечных элементов относительно заземленной рамы солнечной панели, равным 1000 Вольт.


Результаты теста старения:

- категория A снижение мощности элементов составляет не более 5%, т.е. элементы продолжают выдавать более 95% от своего номинала;
- категория В снижение мощности элементов составляет не более 30%, т.е. элементы продолжают выдавать более 70% от своего номинала;
- категория С снижение мощности элементов составляет более 30%, т.е. элементы продолжают выдавать менее 70% от своего номинала.

Отбраковка солнечных элементов при визульном контроле качества

отклонения по цвету

утечка пасты на линии нанесения шин

"Водяные" или тёмные пятна

Основными проблемы в фотоэнергетике:

- фотоэнергетике: сложность технологического процесса изготовления ФЭП;
- низкий КПД ФЭП,
- потребность в больших площадях, необходимых для их эксплуатации.

Основные пути развития технологий СЭ:

- снижении стоимости кремниевых СФЭУ;
 - внедрение тонкопленочных СФЭУ;
- повышение КПД СФЭУ;
- интеграция СФЭУ в строящиеся здания.