Кафедра ВЭПТ

«Основы физики поверхности и тонких пленок»

Лекция 4

<u>Тема</u>:

Сорбционные процессы (4 часа)

- Реальная поверхность твёрдого тела и её
 взаимодействие с газовыми средами. Адсорбция и десорбция.
- Поверхностные фазы в субмонослойных системах адсорбат/подложка.

- Состав поверхностных фаз. Покрытие адсорбата. Покрытие атомов подложки

- Фазовая диаграмма.

http://mdl.lcg.tpu.ru

Рис.1. Зависимость энергии притяжения E_{пр} и отталкивания E_{от}, а также полной потенциальной энергии Е падающих атомов (сплошная линия) от расстояния до поверхности. Здесь Ем – энергия адсорбции, r₀ – расстояние минимума полной потенциальной энергии.

Среднее время жизни адатома может быть описано выражением:

$$\tau_a = \frac{1}{\nu_0} \exp \frac{\Delta E_m}{kT}$$

где v₀ – частота тепловых колебаний адатома в узле кристаллической решетки (v₀ = 10¹²... 10¹⁴ Гц), ΔE_m - энергия адсорбции.

Рис.2. Потенциальный рельеф поверхности (сплошная линия) и возможные положения адатомов.

Е_п – уровень энергии атомов на поверхности;

 $\Delta Eg = Eg - En - энергия активации диффузии адатома на поверхности;$

- ΔЕм энергия адсорбции;
- Ем уровень энергии в вакууме;
- а расстояние между атомами на поверхности.

Концентрация адатомов при осаждении пропорциональна скорости осаждения (плотности потока атомов на поверхности) R:

$$n_a = R \tau_a = \frac{R}{\nu_o} \exp \frac{\Delta E_m}{kT}$$

Рис. 3. Один из простейших вариантов графика потенциальной энергии для случая хемосорбции на плоской поверхности. Заметим, что в случае хемосорбции энергия десорбции *Ed* больше, чем энергия адсорбции *Ea*. Потенциальные ямы содержат дискретные уровни энергии, которые соответствуют разрешенным состояниям адатома.

Поверхностные фазы в субмонослойных системах адсорбат/подложка

В зависимости от силы взаимодействия между адсорбатом и подложкой адсорбция подразделяется на

- физосорбцию (слабое взаимодействие);

- хемосорбцию (сильное взаимодействие).

В качестве граничного значения принята энергия связи между адсорбатом и подложкой около 0,5 эВ на молекулу (или атом) (1эВ/молекула = 23,060 ккал/моль = 96,485 кДж /моль).

Рис. 4. Схематическая иллюстрация поверхностных фаз разного состава, *а* - поверхностные фазы, имеющие одинаковое покрытие атомов подложки (1,0 MC), но различные покрытия атомов адсорбата (1,0, 0,5 и 0,25 MC); *б* — поверхностные фазы с одинаковым покрытием атомов адсорбата (0,5 MC), но с различным покрытием атомов подложки (1,0, 0,5 и 0,25 MC). Атомы адсорбата показаны серыми кружками, атомы подложки белыми кружками.

Таблица 1. Покрытие адсорбата для некоторых поверхностных фаз со структурой $\sqrt{3} \times \sqrt{3}$

Фаза	Θ_a , MC	Фаза	Θ_a , MC
$Pt(111)\sqrt{3} \times \sqrt{3}$ -Sn	1/3	$Ag(111)\sqrt{3}\times\sqrt{3}$ -Cl	1/3
$Pt(111)\sqrt{3}\times\sqrt{3}$ -Xe	1/3	$Ag(111)\sqrt{3}\times\sqrt{3}$ -Cl	2/3
$Ni(111)\sqrt{3} \times \sqrt{3}$ -S	1/3	$Si(111)\sqrt{3} \times \sqrt{3}$ -Bi,Sb	1
$Si(111)\sqrt{3} \times \sqrt{3}$ -B,Al,Ga,In	1/3	$Ge(111)\sqrt{3}\times\sqrt{3}-Ag$	1
$\operatorname{Si}(111)\sqrt{3} \times \sqrt{3}$ -Bi	1/3	$Si(111)\sqrt{3} \times \sqrt{3}$ -Ag	1
$Si(111)\sqrt{3} \times \sqrt{3}$ -Pb	1/3	$Si(111)\sqrt{3} \times \sqrt{3}$ -Pb	4/3

рис. 5

Таблица 2. Покрытия атомов адсорбата и подложки для некоторых поверхностных фаз

Фаза	$\Theta_a,$	$\Theta_s,$	Фаза	$\Theta_a,$	$\Theta_s,$
	MC	\mathbf{MC}		MC	MC
$Al(100)c(2 \times 2)$ -Li	1/4	3/4	Cu(111)2×2-Li	3/4	3/4
$Pt(100)2 \times 2-Sn$	1/4	3/4	$Pt(111)2 \times 2-Sn$	1/4	3/4
Cu(100)3×3-Li	5/9	4/9	$\mathrm{Si}(100)(2{ imes}3){ ext{-Na}}$	1/3	1/3
${ m Ni}(100)c(6{ imes}2){ m -Na}$	1/6	2/3	$Ge(111)\sqrt{3}\times\sqrt{3}$ -Ag	1	1
$\operatorname{Au}(110)c(2{\times}2)$ -K	1/2	1/2	$Si(111)\sqrt{3}\times\sqrt{3}$ -Ag	1	1
$Cu(110)4 \times 1$ -Bi	3/4	3/4	Si(111)(3×1)-Li,Na	1/3	4/3
Al(111) $\sqrt{3} \times \sqrt{3}$ -Li,K	1/3	2/3	$Si(111)(6 \times 1)$ -Ag	1/3	4/3

Закономерности формирования комбинации «адсорбированный слой — подложка»:

- Они стремятся образовать поверхностную структуру с наиболее плотной упаковкой атомов. Т. е. они растут так, что образуется наименьшая элементарная ячейка, допустимая размерами каждого адатома, а также взаимодействиями адатом-адатом и адатом-подложка.
- 2. Они склонны образовывать упорядоченные структуры с той же вращательной симметрией, какой обладает и подложка.
- Э. Они имеют тенденцию образовывать упорядоченные структуры, размеры элементарной ячейки которых довольно просто связаны с размером элементарной ячейки подложки. Так, обычно наблю дается структура (1 x 1), (2 x 2), с(2 x 2) или (3 x 3)-R30°.

Рис. 6. Два возможных варианта структуры поверхности Ni(100)c(2 x 2)-O. Атомы (или ионы) кислорода — пустые кружки, атомы (или ионы) никеля — заштрихованные кружки. (а) Поверхность реконструирована. (б) Классический адсорбированный слой без какой-либо реконструкции.

Рис. 7. *а* — СТМ изображение пар «ямка-островок» доменов поверхностной фазы Si(111) $\sqrt{3} \times \sqrt{3}$ -Ag, формирующихся на поверхности Si(111)7x7. «Ямки» фазы $\sqrt{3} \times \sqrt{3}$ -Ag выглядят как темные области, «островки» $\sqrt{3} \times \sqrt{3}$ -Ag как светлые области. *б* - Схематическая диаграмма структуры пары «ямка-островок». Атомы Ag показаны серыми кружками, атомы Si белыми кружками. в - Схематическая диаграмма, иллюстрирующая массоперенос Si при формировании пары «ямка-островок».

Рис. 8. *а* - Крупномасштабное СТМ изображение поверхности $Si(111)\sqrt{3}\times\sqrt{3}$ -Ag, представляющую собой двухуровневую систему с разностью высот в один двойной слой Si(111). Более яркие участки соответствуют $\sqrt{3}\times\sqrt{3}$ -Ag верхнего уровня (*u*- $\sqrt{3}$), а темные области соответствуют $\sqrt{3}\times\sqrt{3}$ -Ag верхнего уровня (*u*- $\sqrt{3}$), а темные области соответствуют $\sqrt{3}\times\sqrt{3}$ -Ag нижнего уровня (*l*- $\sqrt{3}$). *б* - СТМ изображение высокого разрешения, показывающее, что на верхнем и нижнем уровнях наблюдается одна и та же структура $\sqrt{3}\times\sqrt{3}$ -Ag

Фазовая диаграмма

Рис. 9. Схематическая фазовая диаграмма. Различные траектории соответствуют: А осаждению адсорбата при фиксированной температуре; В' и В - изохронному отжигу адсорбата, осажденного при пониженных температурах, (с и без десорбции адсорбата, соответственно); С - изотермической десорбции адсорбата

10. Схематическая Рис. иллюстрация траектории А на рис. 6, показанная более детально. Стехиометрические покрытия адсорбата для Фазы 2 и Фазы 3 помечены как Θ_2 и $\Theta_{\gamma'}$ соответственно. При увеличении покрытия адсорбата от Θ_2 до Θ_3 доля поверхности, занятой Фазой 2, уменьшается, а занятая Фазой 3 соответственно увеличивается. Граница на фазовой диаграмме соответствует покрытию адсорбата, когда обе фазы занимают примерно равные площади (то доли есть примерно по 50 %)

Рис. **11.** СТМ изображение, показывающее сосуществование двух фаз: $Si(111)\sqrt{3} \times \sqrt{3}$ -In (видна как однородно серая поверхность) и $Si(111)\sqrt{31} \times \sqrt{31}$ -In (видна как яркие и темные области, соответствующие «ямкам» и «островкам»).

Рис. 12. *а* - Фазовая диаграмма для молекул H₂, физосорбированных на поверхности (0001) графита. *б* -Модель соразмерной фазы

Рис. 13. *а* - Фазовая диаграмма для атомов H, хемосорбированных на поверхности Fe(110). *б* - Схематическая диаграмма, иллюстрирующая структурные модели формирующихся фаз

Рис. 14. Фазовая диаграмма системы In/Si(111) и СТМ изображения высокого разрешения поверхностных фаз In/Si(111). Элементарные ячейки обведены на СТМ изображениях сплошной линией.

Рис. 15. Картины атомной релаксации, возникающей вокруг атома, растворенного (а) в объеме и (б) на поверхности матрицы растворяющих атомов.