
Структура и спектральнолюминесцентные свойства микрокристаллических трубок на основе ZrO₂

Автор бакалаврской работы: Д. В. Мягков Руководитель работы: д-р физ.-мат. наук П. А. Рябочкина

Актуальность

Применение

- микрофлюидика
- твердооксидные топливные элементы
- армирующие компоненты композиционных материалов
- доставщики лекарств
- оптические волноводы
- миниатюрные двигатели Холла

Цели и задачи

Цели

Исследование морфологии, фазового состава и спектрально-люминесцентных свойств микрокристаллических трубок на основе диоксида циркония, стабилизированного оксидом иттрия, легированных ионами Yb³⁺.

Задачи

- 1. Исследование морфологии микрокристаллических трубок на основе диоксида циркония, стабилизированного оксидом иттрия, легированных ионами Yb³+, методами оптической микроскопии и сканирующей электронной микроскопии
- 2. Исследование фазового состава микрокристаллических трубок на основе диоксида циркония, стабилизированного оксидом иттрия, легированных ионами Yb³⁺, методами рентгенофазового анализа и спектроскопии комбинационного рассеяния света
- 3. Исследование люминесцентных характеристик микрокристаллических трубок на основе диоксида циркония, стабилизированного оксидом иттрия, легированных ионами Yb^{3+}

Методика получения

Микрокристаллические трубки ZrO_2 -3мол. ${}^{8}Y_2O_3$ -2мол. ${}^{8}Yb_2O_3$ были получены сотрудниками тартуского университета М. Партом и Т. Татте методом золь-гель технологии.

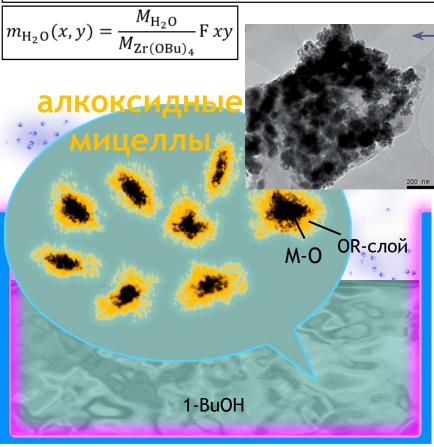
$$m_{p-p X^{1,2}(NO_3)_3}\left(x,y,\nu_{X_2^1O_3},\nu_{X_2^2O_3}\right) = 2 \frac{\nu_{X_2^{1,2}O_3} M_{X^{1,2}(NO_3)_3}}{w_{X^{1,2}(NO_3)_3} M_{Zr(OBu)_4}} \left(\frac{\nu_{X_2^{2,1}O_3}}{\nu_{Zr(OBu)_4}} + 1\right) \frac{xy}{1 - \nu_{X_2^{2,1}O_3}}$$

СЭМ изображение агрегировавших частиц СДЦ

 $X^{1,2} = Y^{3+} \cdot Yb^{3+}$

x — масса y -%-ого раствора бутоксида циркония

 ν — мольная доля

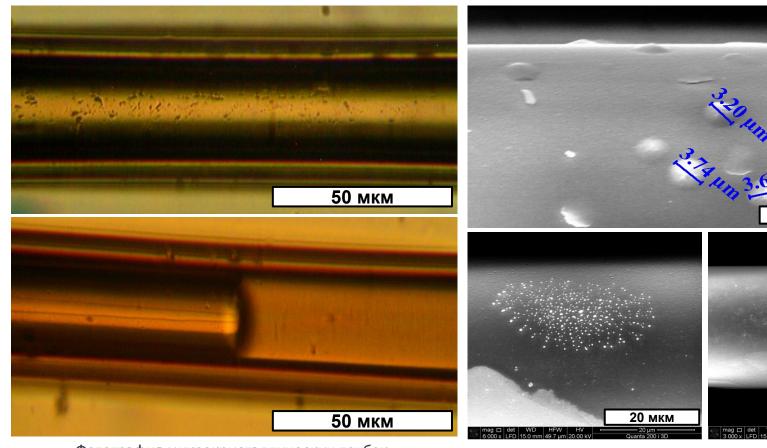

w – массовая доля

М – молярная масса

F – фактор вязкости

Требуемый состав (относительно 5 г 80%-го раствора бутоксида циркония)

Результаты расчета необходимого количества растворов нитратов в 1-бутаноле и воды

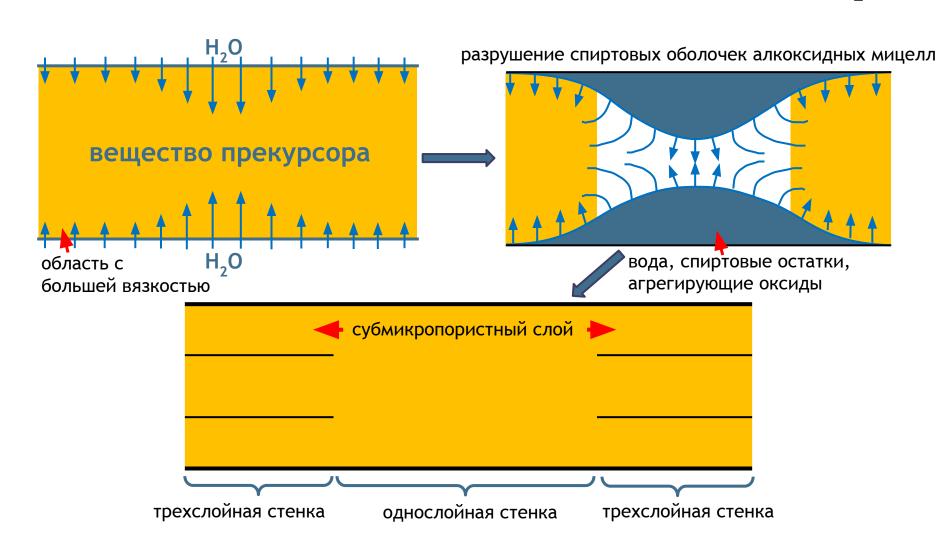


золь-гель прекурсора

жидкие волокна, вытянутые из золь-геля

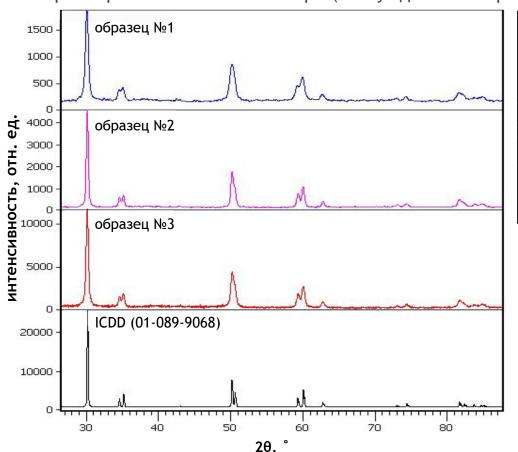
Исследование морфологии микрокристаллических трубок ZrO_2 -3мол.% Y_2O_3 -2мол.% Yb_2O_3

Для изучения морфологии микрокристаллических трубок ZrO_2 -3мол.% Y_2O_3 -2мол.% Yb_2O_3 использовались оптический микроскоп *Levenhuk D670T* и сканирующий электронный микроскоп *Quanta 200 I 3D*.



Фотография микрокристаллических трубок ZrO_2 -3мол. $%Y_2O_3$ -2мол. $%Yb_2O_3$, полученные с помощью оптической микроскопии в проходящем свете

СЭМ-изображения обнаруженных дефектов микрокристаллических трубок ZrO_2 -3мол. $%Y_2O_3$ -2мол. $%Yb_2O_3$


20 мкм

Механизм образования участков с различным числом слоев стенок микрокристаллических трубок на основе ZrO₂

Фазовый анализ микрокристаллических трубок ZrO_2 -3мол. $%Y_2O_3$ -2мол. $%Yb_2O_3$

Для исследования фазового состава микрокристаллических трубок ZrO_2 -3мол. ${}^{8}Y_2O_3$ -2мол. ${}^{8}Y_2O_3$ использовались рентгеновский дифрактометр *Empyrean* (CuK $_{\alpha}$ -излучение с длиной волны 1,5414 Å) и спектрометр *InVia Raman microscope* (возбуждение лазерным пучком с длиной волны 514 нм).

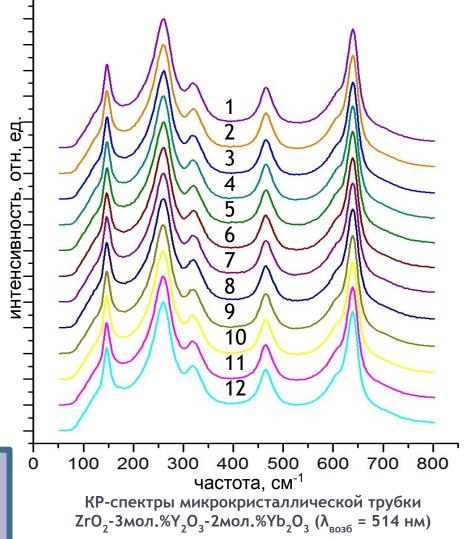
Дифрактограммы микрокристаллических трубок ZrO_2 -3мол. $%Y_2O_3$ -2мол. $%Yb_2O_3$ и дифрактограмма ICDD $(Zr_{0.94}Y_{0.06})O_{1.88}$


Микрокристаллические трубки ${\rm ZrO_2\text{-}3Mon.\%Y_2O_3\text{-}2Mon.\%Yb_2O_3}$	Параметры элементарной ячейки ZrO ₂		
Образец №1	3,607	3,607	5,178
Образец №2	3,606	3,606	5,174
Образец №3	3,604	3,604	5,173
Нестабилизированные			
тетрагональные твердые	3,64	3,64	5,27
растворы ZrO ₂			

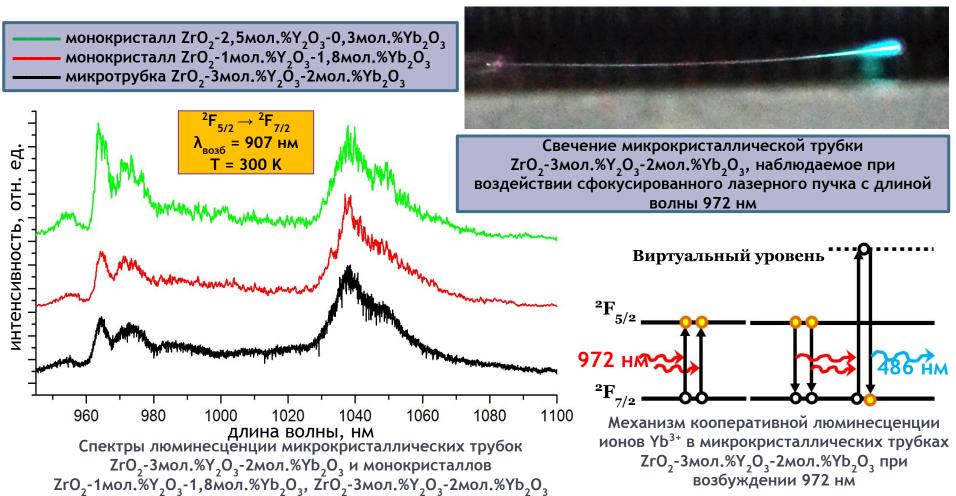
Значения параметров элементарной ячейки диоксида циркония микрокристаллических трубок ZrO_2 -3мол.% Y_2O_3 -2мол.% Yb_2O_3

		3
Микрокристаллические трубки ${\sf ZrO_2} ext{-}3{\sf мол.} ext{%Y}_2{\sf O}_3 ext{-}2{\sf мол.} ext{%Y}{\sf b}_2{\sf O}_3$		
Образец №1	6,08	0,113
Образец №2	6,07	0,039
Образец №3	10,48	0,026

Значения плотности и величины микронапряжений исследуемых образцов микрокристаллических трубок ZrO_2 -3мол. $%Y_2O_3$ -2мол. $%Y_2O_3$


Фазовый анализ микрокристаллических трубок ZrO_2 -3мол.% Y_2O_3 -2мол.% Yb_2O_3

Фотография микрокристаллической трубки ZrO_2 -Змол. ${\rm %Y_2O_3}$ -2мол. ${\rm %Yb_2O_3}$, сделанная на InVia Raman microscope, с указанием точек фокусировки возбуждающего лазерного излучения.


Спектральный анализ КРС и рентгеновский фазовый анализ свидетельствуют о том, что

микрокристаллические трубки ZrO_2 -3мол. $%Y_2O_3$ -2мол. $%Yb_2O_3$ обладают тетрагональной фазой.

Спектрально-люминесцентные характеристики микрокристаллических трубок ${\rm ZrO_2} ext{-}3{\rm Mon.\%Y_2O_3} ext{-}2{\rm Mon.\%Yb_2O_3}$

Спектры люминесценции регистрировались с помощью установки на базе монохроматора МДР-23, для возбуждения люминесценции Yb^{3+} использовалась лазерная система, состоящая из твердотельных лазеров LX329 (на основе Ti:Saphire) и LQ829 (на основе YAG:Nd).

Результаты

- 1. Методами оптической микроскопии и сканирующей электронной микроскопии исследована морфология микрокристаллических трубок на основе диоксида циркония, стабилизированного оксидом иттрия, легированных ионами Yb^{3+} .
- 2. Методами рентгеновского фазового анализа и КРС-спектроскопии показано, что микрокристаллические трубки на основе диоксида циркония, стабилизированного оксидом иттрия, легированных ионами Yb^{3+} , характеризуются тетрагональной структурой.
- 3. Выявлено, что спектры люминесценции, обусловленной переходом ${}^2F_{5/2} \rightarrow \rightarrow {}^2F_{7/2}$ ионов Yb $^{3+}$ в микрокристаллических трубках ZrO $_2$ -3мол. 8Y_2O_3 -2мол. 8Y_2O_3 , аналогичны спектрам люминесценции ионов Yb $^{3+}$ в монокристаллах тетрагонального диоксида циркония составов:
- 1) ZrO_2 -1мол. $%Y_2O_3$ -1,8мол. $%Yb_2O_3$; 2) ZrO_2 -2мол. $%Y_2O_3$ -0,8мол. $%Yb_2O_3$;
- 3) ZrO_2^2 -2,5мол. 6 Y $_2^3$ O $_3$ -0,3мол. 6 Y $_2$ D $_3$; 4) ZrO_2 -3,4мол. 6 Y $_2$ O $_3$ -0,3мол. 6 Y $_2$ D $_3$.
- 4. Для микрокристаллических трубок ZrO_2 -3мол. ${}^{8}Y_2O_3$ -2мол. ${}^{8}Yb_2O_3$ выявлено наличие излучения в синей области спектра при возбуждении Yb^{3+} на уровень ${}^{2}F_{5/2}$ с длиной волны возбуждения, равной 972 нм, что может быть обусловлено кооперативной люминесценцией ионов Yb^{3+} , либо люминесценцией ионов посторонней примеси, например, ионов Tm^{3+} .

Спасибо за внимание