

Интерактивные игры по физике по теме «Тепловые явления. Изменение агрегатных состояний вещества»

Автор: Шамарина Пиньолаевна, Учитель физики, информатики и ИКТ 7-11 классов МКОУ «Средняя общеобразовательная школа», с.Саволенка Юхновского района Калужской области


Содержани

Игра «Ребусы»

Угра «Кодовый замок»

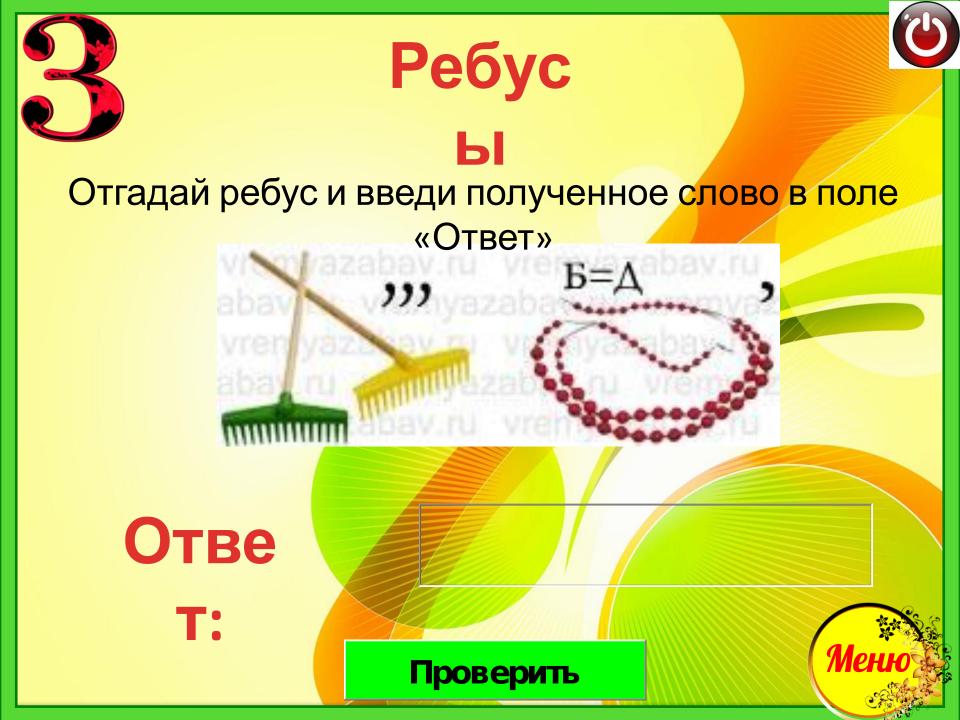
Игра «Пирамида»

Список источников иллюстраций

Ребус

Ы

Отгадай ребус и введи полученное слово в поле



Отве

T:

Проверить

Ребус

Ы

Отгадай ребус и введи полученное слово в поле

Отве

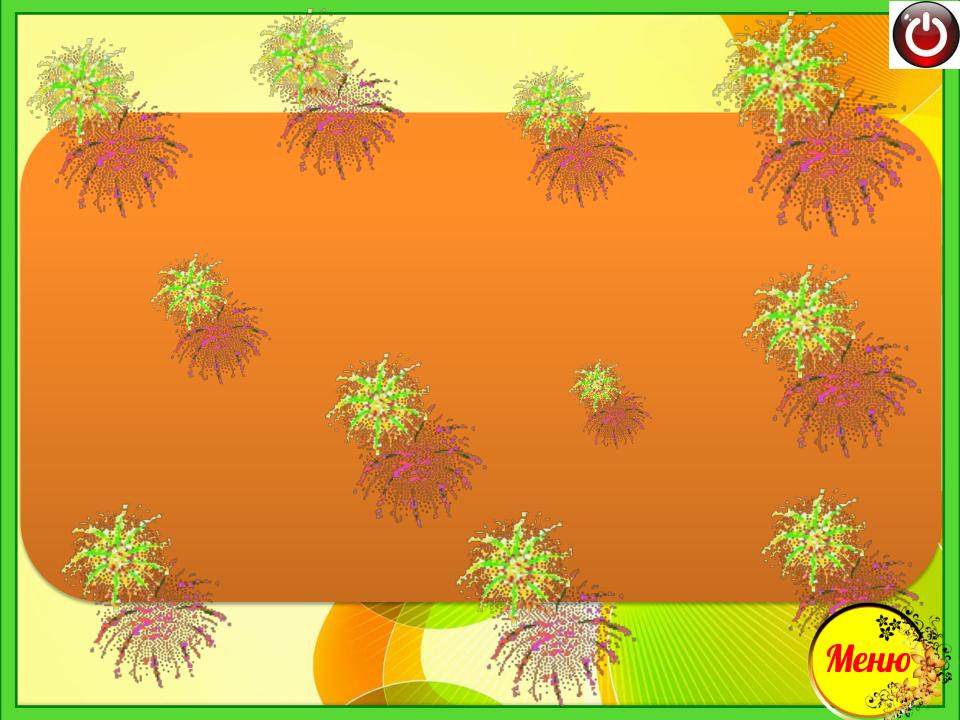
T:

Проверить

Ребус

Ы

Отгадай ребус и введи полученное слово в поле «Ответ»


FP B

Отве

T:

Проверить

Какое количество теплоты выделится при сгорании 8 г спирта? Ответ дайте в кДж.

Принять ответ.

Поздравляем! Эту дверь Вам удалось

Увы! Но эту дверь Вам

Определите удельную теплоёмкость вещества, из которого изготовлен брусок массой 800 г, если на его нагревание от 50°С до 150°С потребовалось 20 кДж энергии.

Впишите название вещества: Принять ответ.

Поздравляем! Эту дверь Вам удалось

Увы! Но эту дверь Вам

Определите удельную теплоёмкость вещества, из которого изготовлен брусок массой 800 г, если на его нагревание от 50°C до 150°C потребовалось 20 кДж энергии.

Принять ответ.

Поздравляем! Эту дверь Вам удалось

Инструкция для игры «Кодовый

замок»

- Решите предложенную задачу.
- 2. Вы получите численный результат. Это число и будет кодом замка.
- 3. Установите флажки, соответствующие цифрам полученного числа.
- 4. Нажмите кнопку «Принять ответ».
- 5. Будьте внимательны! Ответ нужно давать в тех единицах измерения, которые запрашиваются в задаче.

СП	Dale	ЗОЧЬ	ные

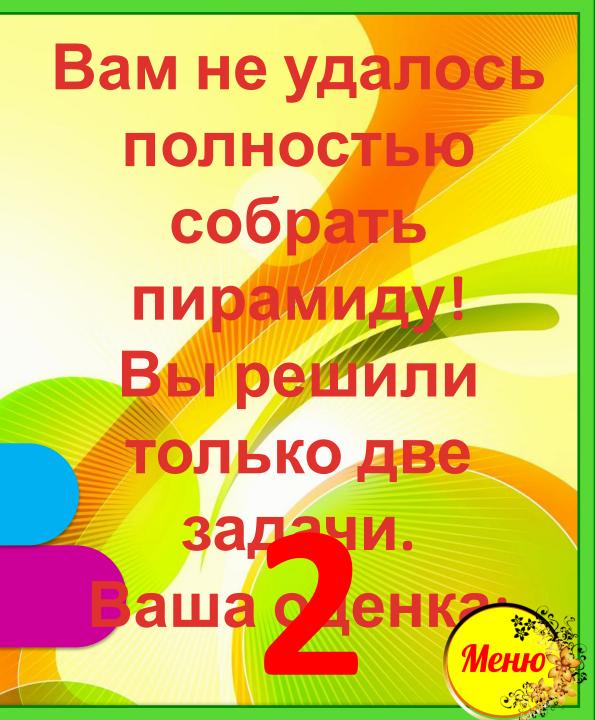
Удельная теплоёмката $\left(\frac{\text{Дж}}{\text{кг} \cdot \text{°C}}\right)$	Утгльнга теплота плавления $\left(\frac{{ m Дж}}{{ m кr}}\right)$	Температура плавления (°C)	
4200	-		
920	39 · 10 ⁴	658	
380	$21\cdot 10^4$	1083	
140	2,5 · 10 ⁴	327	
250	5,9 · 10 ⁴	232	
250	10·10 ⁴	960	
Удельная теплота сгорания топлива $\left(\frac{\mathcal{A}_{\mathbb{K}\Gamma}}{\mathbb{K}\Gamma}\right)$			
27 · 10 ⁶			
46 · 10 ⁶			
Удельная теплота парообразования $\left(\frac{\mathcal{A}_{\mathbb{K}\Gamma}}{\mathbb{K}\Gamma}\right)$			
2,3 · 10 ⁶			
Плотность $\binom{\mathrm{K}\Gamma}{\mathrm{M}^3}$			
	11300	WWW U	
	(Дж кг·°С) 4200 920 380 140 250 250 Удельная т 27 · 10 ⁶ 46 · 10 ⁶ Удельная т	(Дж кг°С) плавления (Дж кг) 4200 - 920 39 · 10 ⁴ 380 21 · 10 ⁴ 140 2,5 · 10 ⁴ 250 5,9 · 10 ⁴ 250 10 · 10 ⁴ Удельная теплота сгорания тог 27 · 10 ⁶ 46 · 10 ⁶ Удельная теплота парообразов 2,3 · 10 ⁶ Плотность (кг/м3)	

Решите задачу. Введите результат в поле для ввода ответа и нажмите кнопку «Проверить». Будьте внимательны! Ответ нужно давать в тех единицах измерения, которые указаны рядом с полем ввода ответа.

Теперь Вы можете закрыть это сообщение.

ЯВЛЕН

Завершить игру



Вам не удалось полностью собрат пирамиду! Вы решили олько одну аша о ден

1

Список источников

Ребусы:

- 1. http://vremyazabav.ru/zanimalero/ebut ebut by bus alay 4934 musi-po-fizike.html
- 2.http://rebus1.com/index.php?item=rebus460000

Фон:

1.http://www.allfons.ru/download/11433/1152x864/

Замки:

- 1.http://allcorp-msk.ru/goodsitem_21652.html
- http://www.petlizamki.ru/10-kodovye-zamki
- 1.http://zamoc.su/onguard.html
- 2. http://forum.gorod.dp.ua/showthread.php?t=275185&s=258e3b92ae7c46c754f0b9cd5027

Анимации «Двери»:

- 1. http://www.heathersanimations.com/buildings.html
- 2. http://animashki.mirfentazy.ru/architektura-i-artefakti/vorota-i-dveri-animatsiya

Пирамиды:

- 1. http://kaknado.su/blog/holidays/deti-dr/podarite-igrushku/
- 2. http://vorotila.ru/lgry-razvlecheniya-i-programmy/Detskaya-piramidka--razvivayushhaya-igr

ushka-i57734

Смайлик:

1.http://kartinks.ucoz.ru/photo/14-0-599-3

Виньетки:

1.http://peklama.0pk.ru/viewtopic.php?id=750

