МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН АКТЮБИНСКИЙ РЕГИОНАЛЬНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. К. ЖУБАНОВА

Технический факультет Кафедра « Металлургия и Горное дело» Специальность — 5В070900 Металлургия

КУРСОВАЯ РАБОТА

Дисциплина: «Основы научных исследований и курсовая научноисследовательская работа»

Тема работы: «Исследование термодинамические возможности получения меди с применением программного комплекса АСТРА-4»

Выполнили: студентки группы Мк-301

Куантаева М.Т

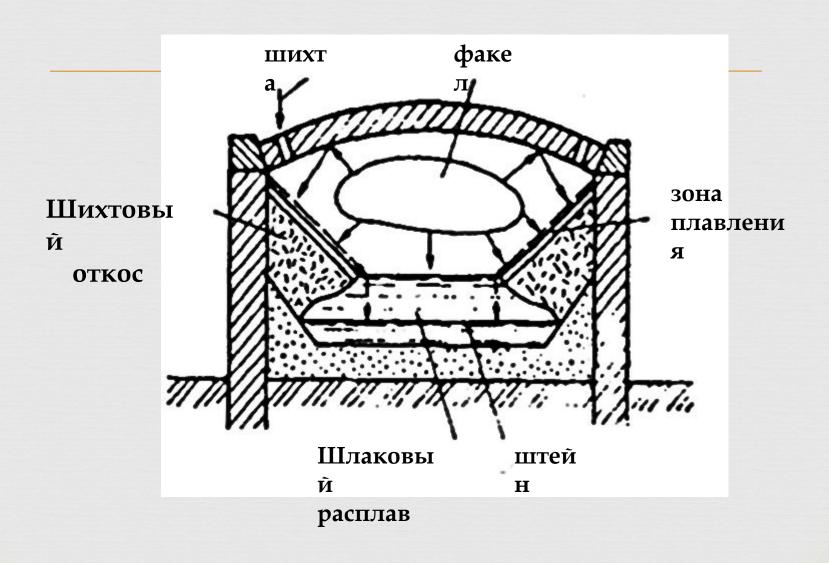
Ибраймова Н.Е

Работу принял: доцент, к. т. н

Келаманов Б.С

Медь – это пластичный золотисторозовый металл с характерным металлическим блеском

Характеристика основных физико-механических свойств меди



Главнейшие минералы меди

Минерал	Химический состав (формула	Содержание меди, %	Плотность, г/см 3		
Халькопирит	CuFeS ₂	34,5	4,1-4,3		
Борнит	$Cu_{5}FeS_{4}$	52-65	4,9-5,2		
Халькозин	Cu ₂ S	79,8	5,5-5,8		
Кубанит	CuFe ₂ S ₃	22–24	4,0-4,2		
Блеклые руды	3Cu ₂ S(Sb, As) ₂ S ₃	22–53	4,4–5,1		
Энаргит	Cu_3AsS_4	48,3	4,4-4,5		
Ковеллин	CuS	66,5	4,6–4,7		
Малахит	CuCO ₃ ·Cu(OH) ₂	57,4	3,9-4,1		
Куприт	Cu ₂ O	88,8	5,8-6,1		
Тенорит	CuO	79,9	5,8-6,4		
Самородная медь	Cu	88–100	8,5–8,9		

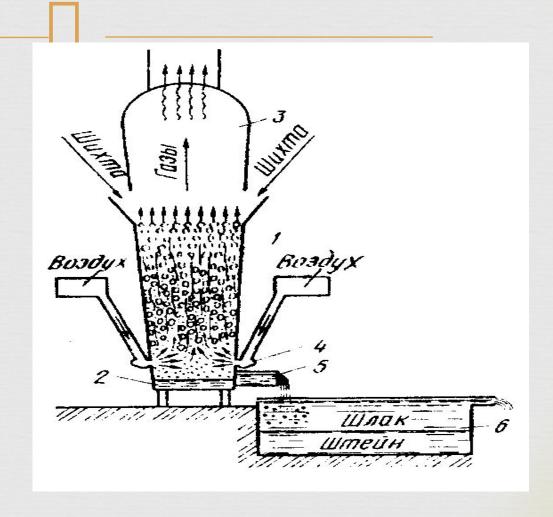
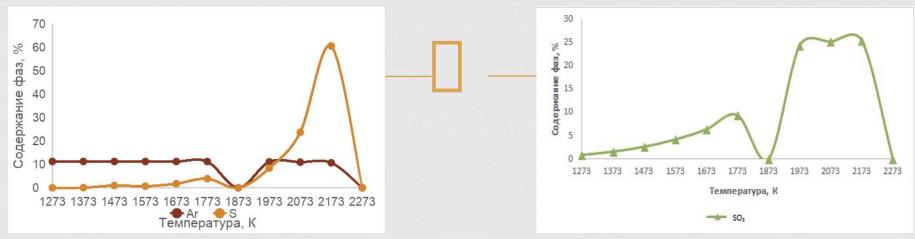


Схема плавки в отражательной печи с образование шихтовых откосов

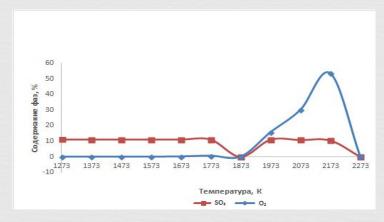
ШАХТНАЯ ПЕЧЬ ПРЕДСТАВЛЯЕТ СОБОЙ ПЛАВИЛЬНЫЙ АППАРАТ С ВЕРТИКАЛЬНЫМ РАБОЧИМ ПРОСТРАНСТВОМ, ПОХОЖИМ НА ШАХТУ.

1-шахта печи; 2-внутренний горн; 3-колошник; 4-фурма; 5-выпускной желоб; 6-наружный (передний) отстойный горн

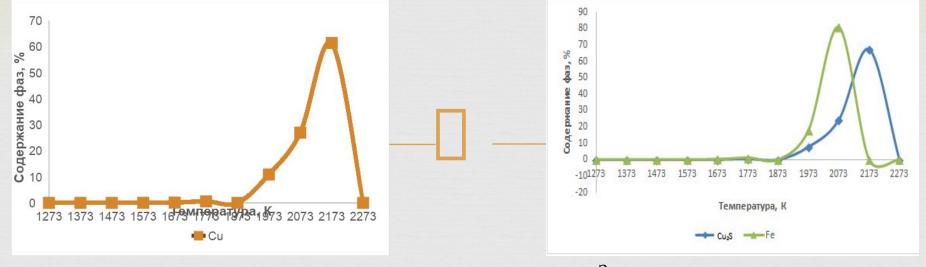

Марка и Химический состав технической меди

Марка	Cu	Fe	S	О
МОО к	99,98	0,01	0,001	0,001
МО к	99,97	0,001	0,02	0,001
М1к	99,95	0,003	0,04	0,002
М2 к	99,93	0,005	0,01	0,002
МОО б	99,9	0,001	0,01	0,003
Mo 6	99,97	0,004	0,03	0,002
M1 6	99,97	0,004	0,03	0,002

Рациональный состав медного сырья, % CuFeS₂

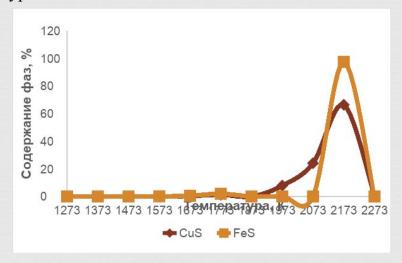

Минерал ы	Cu	Fe	S	${ m SiO}_2$	CaO	MgO	${ m Al}_{2}{ m O}_{3}$	прочие	всего
CuFeS ₂	23	20,18	23,14						66,32
FeS_2		5,32	6,10						11,42
S_{2}			3,76						3,76
Пустая порода				2,0	0,5	0,5	5,2	10,3	18,5
всего	23	25,5	33,0	2,0	0,5	0,5	5,2	10,3	100

Обработка результатов расчета программы «АСТРА-4»

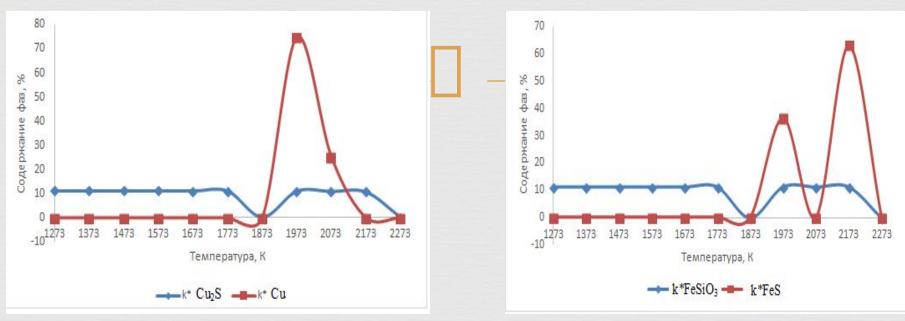


Зависимость содержания газовых фаз Ar, S от температуры

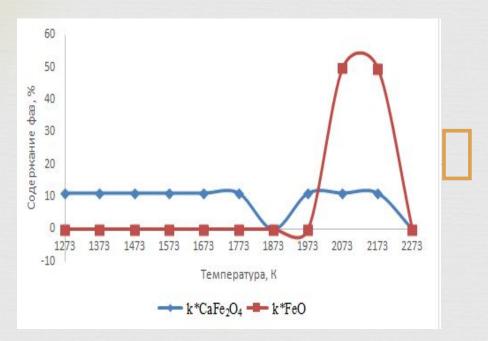
Зависимость содержания газовых фаз SO₂ от температуры



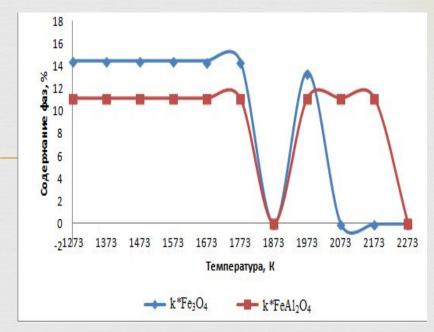
Зависимость содержания газовых фаз SO_2 , O_2 от температуры


Зависимость содержания газовых фаз Си от температуры

Зависимость содержания газовых фаз Cu_2S , Fe от температуры


Зависимость содержания газовых фаз CuS, FeS от температуры

Зависимость содержания конденсированных фаз



Зависимости содержания конденсированных фаз Cu_2S , Cu температуры

Зависимости содержания конденсированных ϕ аз FeSiO $_3$, FeS от температуры

Зависимости содержания конденсированных фаз ${\rm CaFe_2O_4}$, FeO от температуры

Зависимости содержания конденсированных фаз $\mathrm{Fe_3O_4}$, $\mathrm{FeAl_2O_4}$ от температуры

ЗАКЛЮЧЕНИЕ

? Проведен анализ производства меди, минералы, оксиды и методы получения меди. В результате исследований термодинамических расчетов с использованием программного комплекса «ACTPA-4» были установлены основные существующие конденсированные фазы: k^*Cu , k^*Cu_2S , k^*FeSiO_3 , k^*FeS , k^*FeO , $k^*CaFe_2O_4$, $k^*Fe_3O_4$, $k^*FeAl_2O_4$ и газовые фазы Ar, S, SO_2 , O_2 , Cu, Cu_2S , Fe, CuS, FeS характеризующие составы выплавляемых сплавов