
Предмет физической химии. Первый закон термодинамики

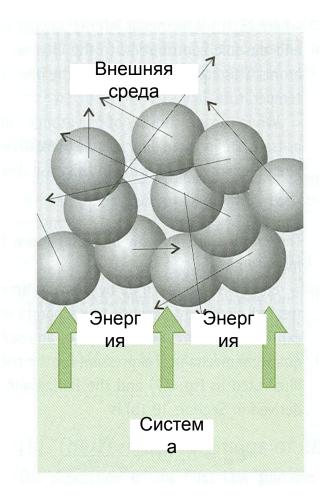
Термодинамические системы и термодинамические параметры.

Внутренняя энергия, энтальпия, теплота и работа.

Первое начало термодинамики.

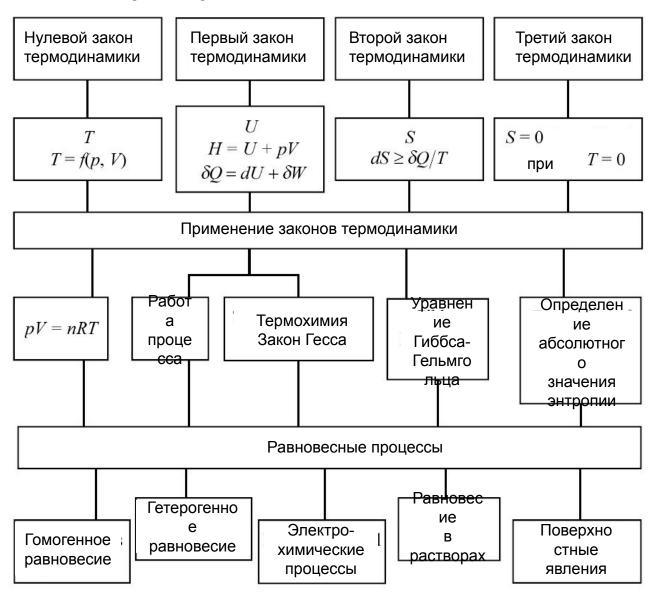
Работа и теплота в различных процессах

Что изучает физическая химия?


Физическая химия - это наука о законах химических процессов и химических явлениях.

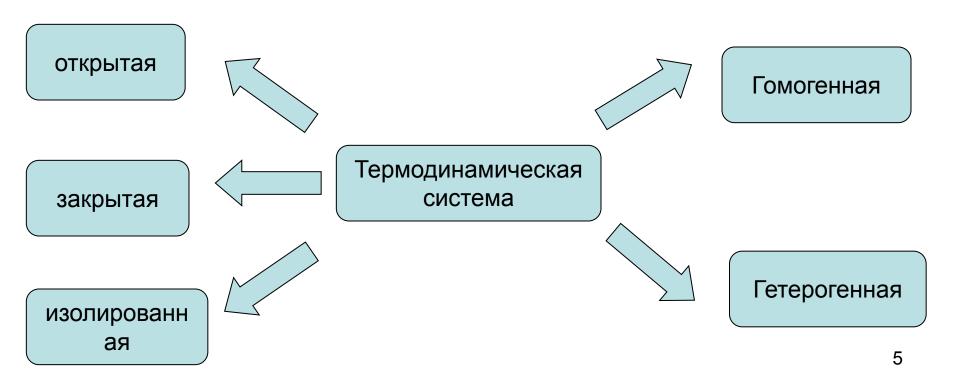
Законы и положения физической химии используются чтобы объяснить и понять физические и химические свойства материи.

Физическая химия объясняет явления, которые основаны на физических законах и дает количественное описание химических процессов.

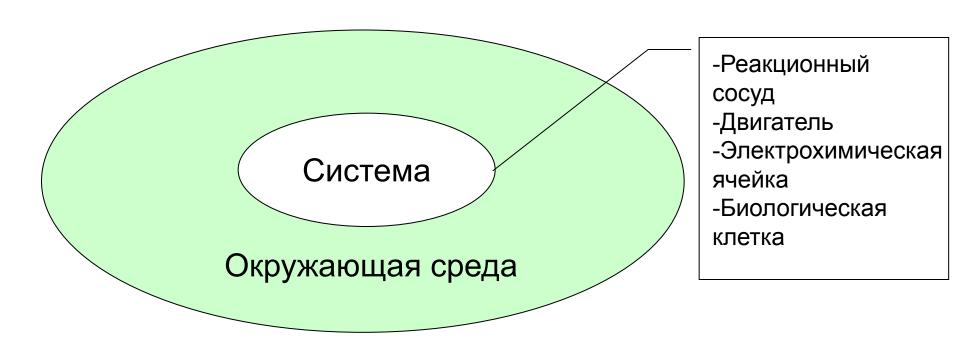

Что такое термодинамика?

Термодинамика - это раздел физической химии об использовании и превращениях энергии.

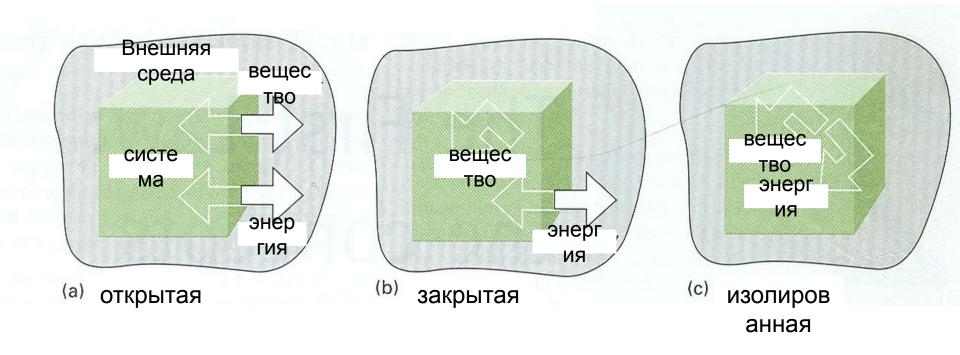
Основные постулаты термодинамики:


- 1. Система приходит в состояние равновесия при постоянных внешних условиях на границе с течением времени. (t → ∞).
- 2. Все свойства термодинамической системы (включая внутренние параметры) являются функцией внешних параметров и состава системы.

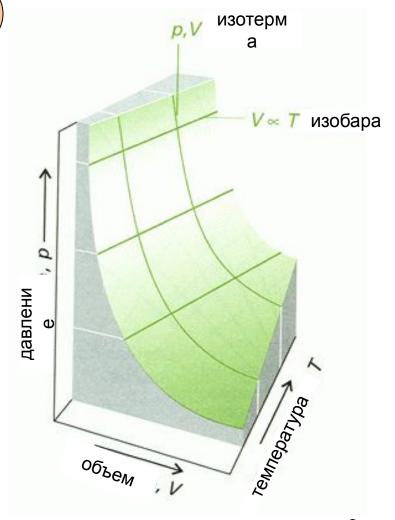
Структура термодинамики

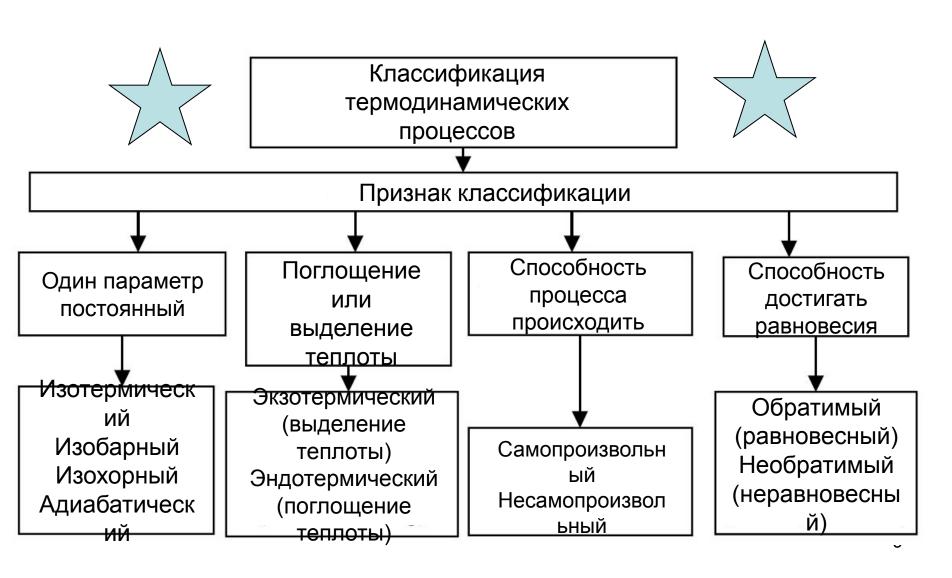


Что такое термодинамическая система?


Термодинамическая система – это тело (или несколько тел) которое может обмениваться энергией с другими телами или веществами, отделенное от внешней среды реальной или воображаемой оболочкой.

Термодинамическая система


Типы термодинамических систем


Энергия системы - это ее способность совершать работу

Что такое термодинамический процесс?

Термодинамич еский процесс это изменение состояния термодинамичес кой системы, которое сопровождается изменением хотя бы одного из параметров.

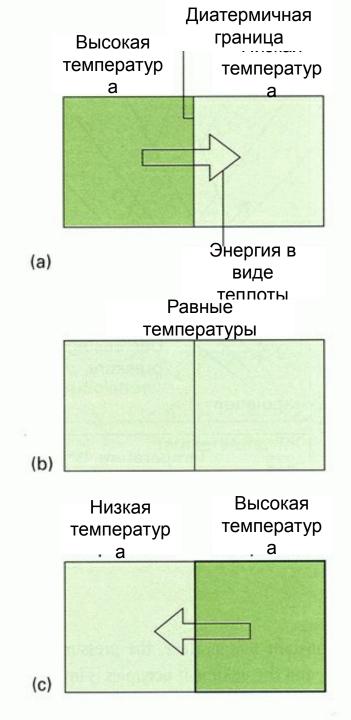
Термодинамические процессы

Что такое термодинамический параметр?

Термодинамический параметр - это величина, которая описывает состояние термодинамической системы (температура, давление, объем).

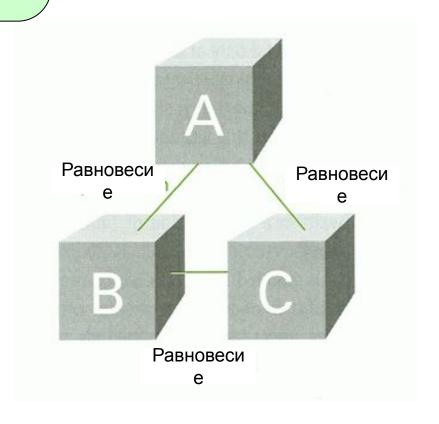
Термодинамический параметр

Интенсивный

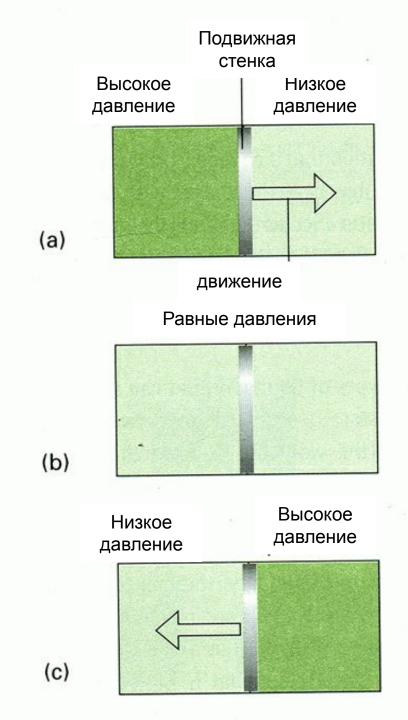

Не зависит от количества вещества в системе

Экстенсивный

зависит от количества вещества в системе


Температура

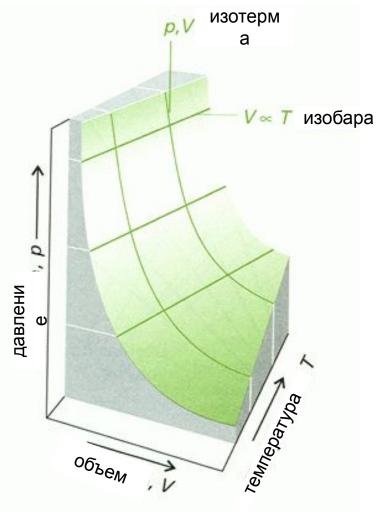
- Температура *T*, это параметр который указывает на направление движения *энергии*
- Температура это свойство, которое говорит о том, могут ли два объекта быть в *тепловом* равновесии.


Закон теплового равновесия

Если объект А находится в тепловом равновесии с объектом В, а объект В находится в тепловом равновесии с объектом С, то объект С тоже находится в тепловом равновесии с объектом А.

Давление

- Давление Р, это параметр, который говорит о направлении движения *материи* (вещества).
- Давление это свойство, которое говорит о том, могут ли два объекта быть в механическом равновесии.



Закон Менделеева-Клапейрона

Закон Менделеева-Клапейрона:

- $pV = \text{constant } \times nT$
- pV = nRT
- R газовая постоянная

R8.31451 J K⁻¹ mol⁻¹ 8.20578 × 10⁻² L atm K⁻¹ mol⁻¹ 8.31451 × 10⁻² L bar K⁻¹ mol⁻¹ 8.31451 Pa m³ K⁻¹ mol⁻¹ 62.364 L Torr K⁻¹ mol⁻¹ 1.98722 cal K⁻¹ mol⁻¹

Смеси газов

Закон Дальтона:

давление, создаваемое смесью идеальных газов – это сумма парциальных давлений газов.

$$P = p_A + p_B + \dots$$

Для каждого газа *J*:

$$p_J = \frac{n_J RT}{V}$$

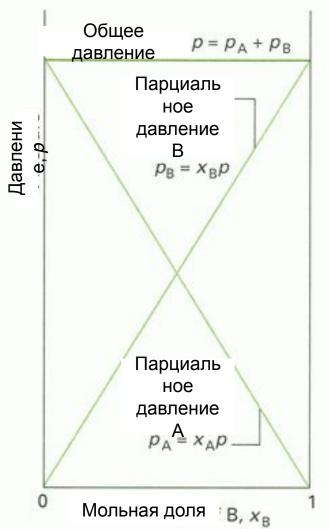
Pj

Парциальное давление - это давление, которое создает газ, если он только один присутствует в контейнере.

Смеси газов

Мольная доля и парциальное давление

• Мольная доля, x_J это количество вещества J отнесенное к общему количеству моль в смеси, n:

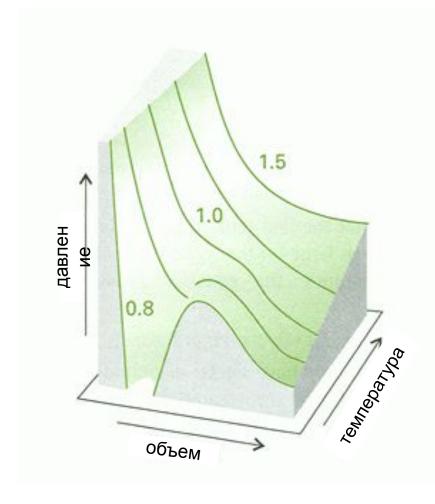

$$x_J = \frac{n_J}{n} \qquad n = n_A + n_B + \dots$$

$$x_A + x_R + \dots = 1$$

• Парциальное давление, $\rho_{_{\rm J}}$:

$$p_J = x_J P$$

$$p_A + p_B + \dots = (x_A + x_B + \dots)P = P$$

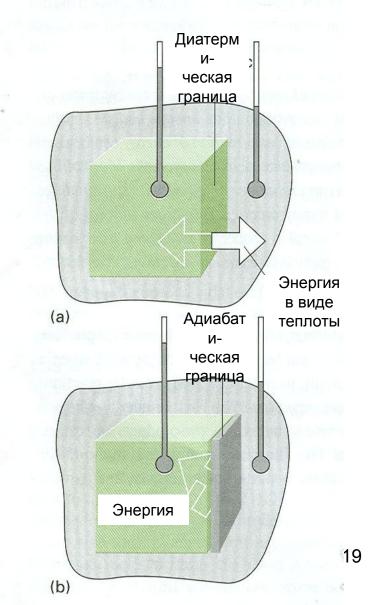

Законы реальных газов

Уравнение Ван-дер-Ваальса:

$$P = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)^2$$

$$V_{m} = \frac{V}{n}$$
 Молярный объем

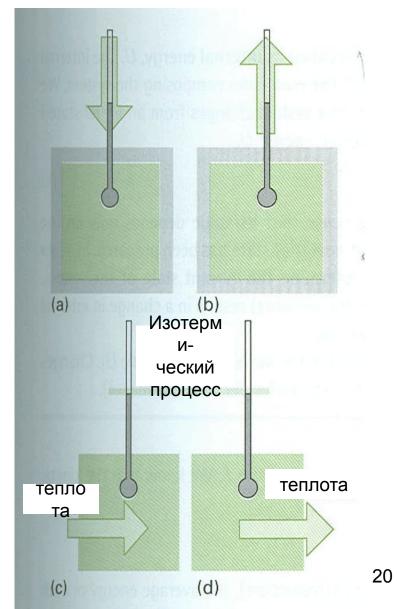
$$P = \frac{RT}{V_m - b} - \frac{a}{V_m^2}$$


Работа: основные понятия

- Если объект движется против приложенной силы, то он совершает работу.
- Пример: работа расширения газа
- Другие примеры?

Теплота: основные понятия

- Если энергия системы изменяется в результате разности температур между системой и внешней средой, то энергия передается в виде теплоты, Q.
- Не все границы позволяют передачу энергии.
 Диатермическая (теплопрозрачная) граница позволяет передачу энергии в виде теплоты.
 Адиабатическая граница не позволяет передачу теплоты.

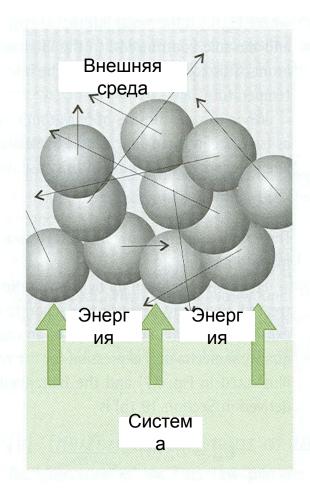

Эндотермические и экзотермические процессы

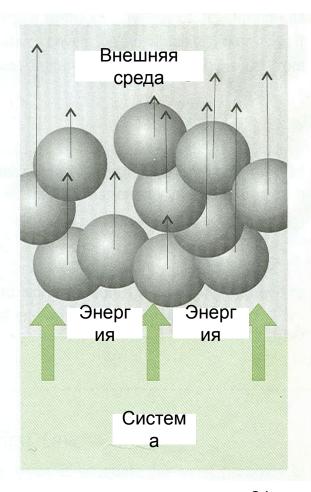
Процессы:

- Экзотермические
- Эндотермические
- Изотермические

Примеры?

Что происходит с теплотой и температурой в экзотермических, эндотермических и изотермических процессах?




В чем разница между работой и теплотой?

Обоснование на молекулярном уровне

Теплота это передача энергии вследствие хаотичного (беспорядочного) движения молекул (теплового движения)

Работа это передача энергии вследствие организованного (упорядоченного) движения молекул.

Внутренняя энергия: основные понятия

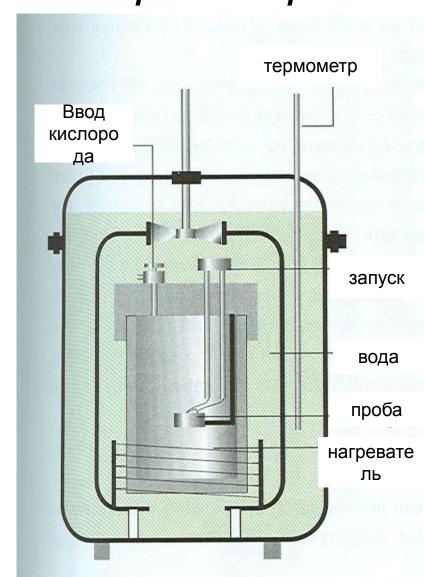
Общая энергия системы называется ее внутренней энергией.

Внутренняя энергия

системы это сумма общей кинетической и потенциальной энергий молекул, составляющих систему. Обозначим ΔU изменение внутренней энергии если система переходит из начального состояния (U_1) в конечное состояние (U_2) :

$$\Delta U = U_2 - U_1$$

Внутренняя энергия: основные понятия


- Внутренняя энергия является функцией состояния (переменной состояния). Изменение термодинамических параметров приводит к изменению внутренней энергии.
- В термодинамике энергия процесса считается положительной если внутренняя энергия системы увеличивается в ходе процесса.
- Переменная (функция) состояния величина, которая зависит только от состояния системы в начальном и конечном состоянии и не зависит от пути процесса.

Измерение внутренней энергии Калориметрия

Калориметр – прибор для измерения внутренней энергии Δ*U*

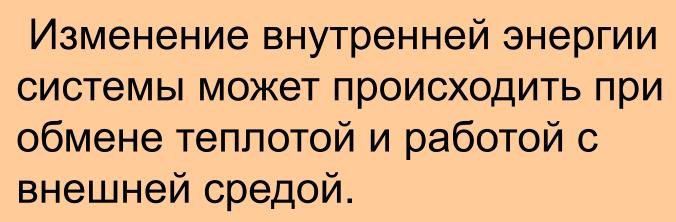
Q = C∆T C – константа калориметра

Q = IEt I – ток, A E – потенциал, В t – время, с

Закон сохранения энергии

Энергия не возникает и не исчезает, а только переходит из одной формы в другую.

В любой изолированной системе запас энергии остается постоянным

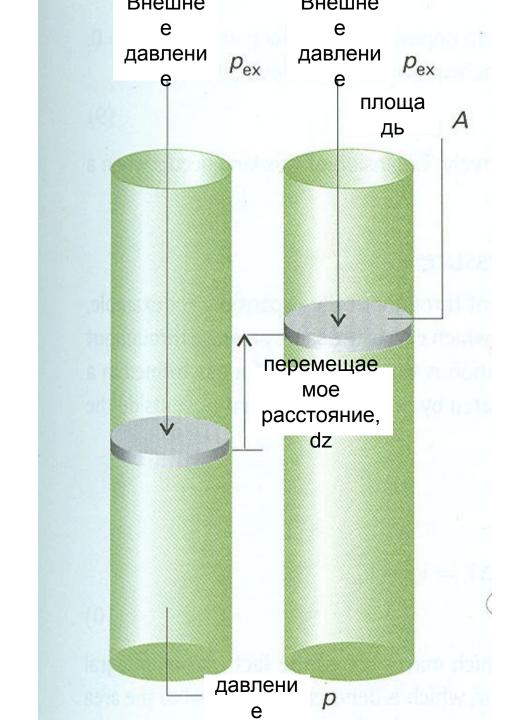

Разные формы энергии переходят друг в друга в строго эквивалентных количествах.

Первый закон термодинамики

Полученная системой из внешней среды теплота расходуется на увеличение внутренней энергии и на совершение работы. $\delta Q = dU + \delta W$

Вечный двигатель первого рода невозможен, т.е. невозможно построить машину, которая дает работу без затрат соответствующего количества теплоты

Первый закон термодинамики



 $U = \delta Q - \delta W \pm \Sigma \delta W$

Где ΣδW – сумма всех видов немеханической работы.

Работа расширения

- Работа расширения это работа, совершаемая при изменении объема
- Когда поршень из области А перемещается на расстояние dz, он изменяет объем на величину dV=Adz.
- Внешнее давление P_{ex} равно весу, давящему на поршень и приложенной силе $F=P_{\text{ex}}A$

Общее выражение для работы

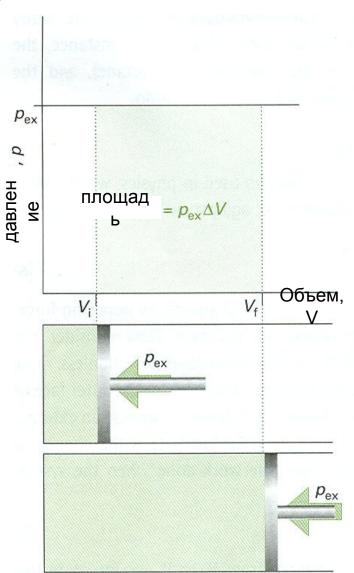
Работа, необходимая, чтобы переместить объект на расстояние dz против приложенной силы *F* равна:

$$dW = Fdz$$
 $F = P_{ex}A$

$$dW = P_{ex}Adz \qquad \Box \qquad dW = P_{ex}dV$$

$$W = \int_{V_1}^{V_2} P_{ex} dV$$

 $W = \int\limits_{-\infty}^{\infty} P_{ex} dV$ Работа, совершенная системой, считается положительной

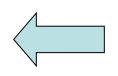

Работа расширения идеального газа при постоянном давлении

$$W = P_{ex} \int_{V_1}^{V_2} dV = P_{ex} (V_2 - V_1)$$

$$\Delta V = V_2 - V_1$$

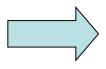
$$W = P_{ex} \Delta V$$

Работа, совершаемая газом при расширении при постоянном давлении равна области на диаграмме (см рис.)



Работа изотермического расширения идеального газа

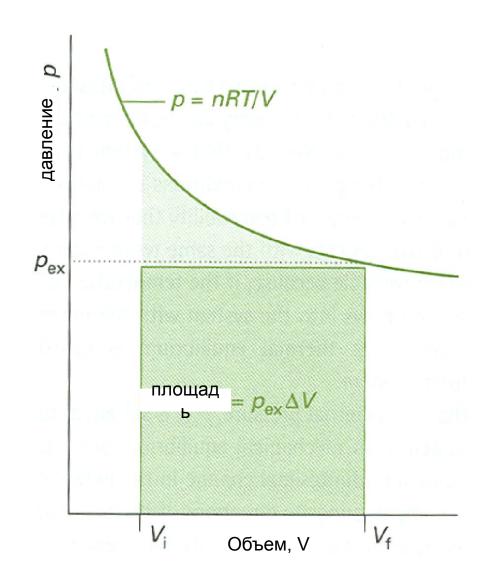
$$PV = nRT$$



$$W = \int_{V_1}^{V_2} P dV \qquad \qquad P = \frac{nRT}{V}$$

$$P = \frac{nRT}{V}$$

$$W = nRT \int_{V_1}^{V_2} \frac{dV}{V} \qquad W = nRT \ln \frac{V_2}{V_1}$$



$$W = nRT \ln \frac{V_2}{V_1}$$

Расширение идеального газа в различных процессах

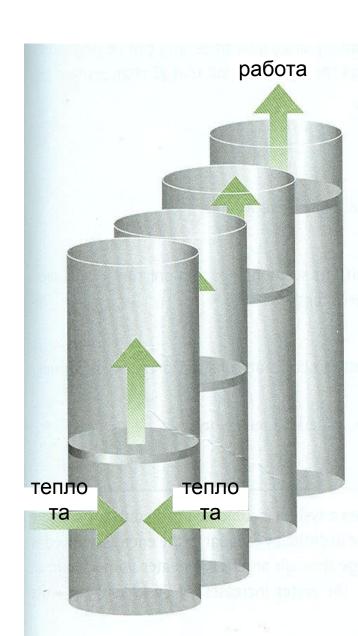
- В изотермическом процессе: работа, совершаемая идеальным газом при изотермическом расширении равна площади под изотермой P=nRT/V.
- В изобарном процессе: работа, совершаемая при расширении газа равна площади

$$W = P_{ex} \Delta V$$

Энтальпия: основные понятия

$$\delta Q = dU + PdV$$

 $\delta Q = d(U + PV)$


Теплота, которая выделяется при постоянном давлении равна изменению **энтальпии**, *H*.

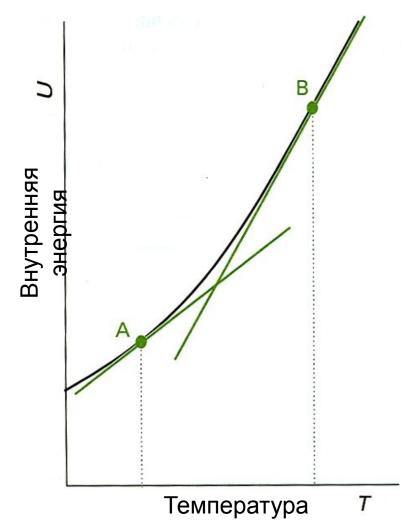
Энтальпия – термодинамическое свойство системы

$$H = U + PV$$

Поскольку U, P и V являются функциями состояния, то энтальпия – тоже функция состояния.

 $H = Q_p$ (при постоянном давлении)

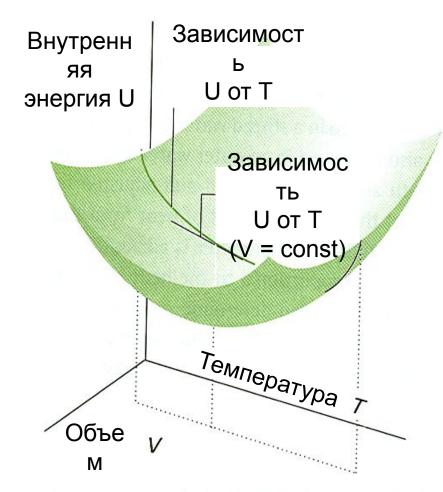
Энтальпия идеального газа


$$PV = \Delta nRT$$
 $H = U + PV = U + \Delta nRT$
 $\Delta n - u$ зменение моль молекул **газа** в реакции.

 $2H_2(z) + O_2(z) = 2H_2O(x)$
 $\Delta n = -3$ моль
 $\Delta H - \Delta U = \Delta nRT = -3 \cdot 8.31 \cdot 298 = -7.5$ k Д x

Теплоемкость

- Внутренняя энергия вещества возрастает если температура повышается. (Кривая на графике характеризует теплоемкость).
- Производная поглощенной теплоты, отнесенная к температуре называется теплоемкостью.


$$C = \frac{\partial Q}{\partial T}$$

Теплоемкость при постоянном объеме

- Внутренняя энергия системы и объем изменяются при изменении температуры.
- Теплоемкость при постоянном объеме обозначается C_V и определяется как :

$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V}$$

Pacчet C_V

 Для идеального одноатомного газа:

$$C_{V,m} = \left(\frac{\partial U}{\partial T}\right)_{V} = \frac{3}{2}R$$

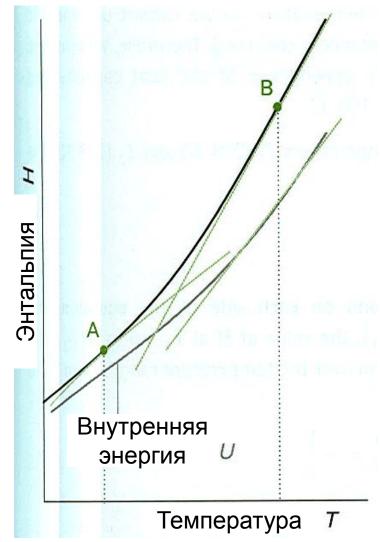
 Для идеального двухатомного газа:

$$C_{V,m} = \left(\frac{\partial U}{\partial T}\right)_{V} = \frac{5}{2}R$$

• Теплоемкость при постоянном объеме может быть использована, чтобы найти изменение внутренней энергии при изменении температуры (при V = const):

$$dU = C_V dT$$

$$\Delta U = C_V \Delta T$$


$$Q_{V} = C_{V} \Delta T$$

Теплоемкость при постоянном давлении

Теплоемкость при постоянном давлении

 это наклон кривой на графике зависимости «энтальпия — температура» при Р = const:

$$C_P = \left(\frac{\partial H}{\partial T}\right)_P$$

Адиабатический процесс

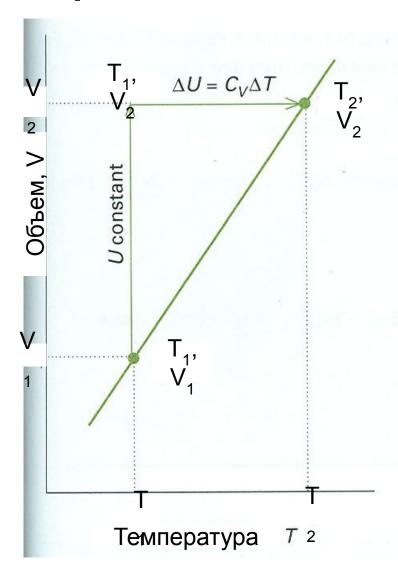
Первый этап:

V – переменная

T = constant

Второй этап:

Т – переменная


V = constant

$$\Delta U = C_V (T_2 - T_1) = C_V \Delta T$$

$$q = 0$$

$$\Delta U = q + W$$

$$\Delta U = W_{ad} \qquad W_{ad} = C_V \Delta T$$

Обратимое адиабатические расширение идеального газа

$$W_{ad} = PdV$$

$$dU = -dW_{ad}$$

$$C_{\nu}dT = -PdV$$

$$C_V \frac{dT}{T} = -nR \frac{dV}{V}$$

$$C_{V} \int_{T_{1}}^{T_{2}} \frac{dT}{T} = -nR \int_{V_{1}}^{V_{2}} \frac{dV}{V}$$

$$C_V \ln\left(\frac{T_2}{T_1}\right) = -nR \ln\left(\frac{V_2}{V_1}\right)$$

$$dU = C_{V}dT$$

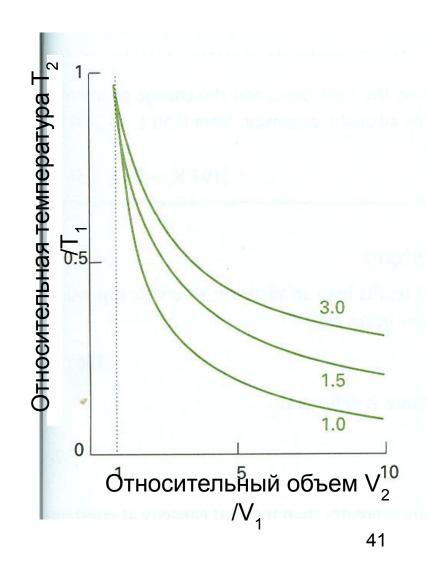
$$P = \frac{nRT}{V}$$

$$\int \frac{dx}{x} = \ln x$$

$$a \ln x = \ln x^a$$

$$-\ln\frac{x}{y} = \ln\frac{y}{x}$$

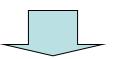
$$c = \frac{C_V}{nR}$$

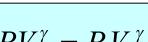

$$\ln\left(\frac{T_2}{T_1}\right)^c = \ln\left(\frac{V_1}{V_2}\right)$$

Изменение температуры при обратимом адиабатическом расширении идеального газа

$$\ln\left(\frac{T_2}{T_1}\right)^c = \ln\left(\frac{V_1}{V_2}\right)$$

$$\left(\frac{T_2}{T_1}\right)^c = \frac{V_1}{V_2}$$

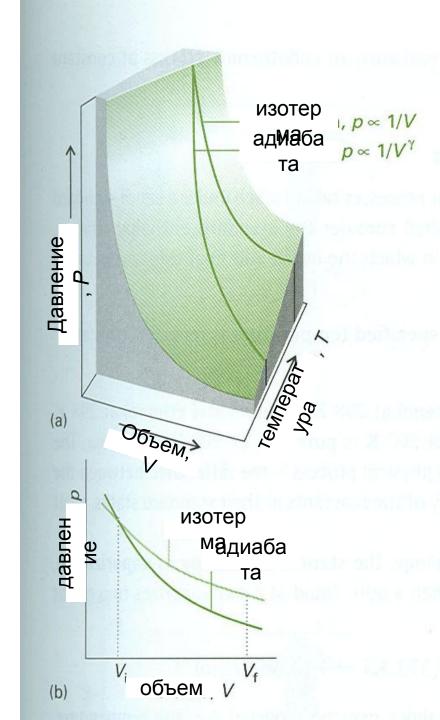

$$T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\frac{1}{c}}$$


Уравнение адиабаты

$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\frac{1}{c}}$$

$$PV = nRT$$

$$T = \frac{PV}{nR}$$



$$P_1V_1^{\gamma} = P_2V_2^{\gamma}$$
 $PV^{\gamma} = const$

$$\gamma = \frac{C_{p,m}}{C_{V,m}}$$

$$\gamma = \frac{C_{V,m} + R}{C_{V,m}}$$

у – отношение теплоемкостей

Работа и теплота в различных процессах

Процесс	Работа	Теплота	Уравнение идеального газа
изотермиче ский	$nRT \ln \frac{V_2}{V_1}$	$nRT \ln \frac{p_1}{p_2}$	pV = const
изохорный	0	$nC_V(T_2-T_1)$	$\frac{p}{T} = \text{const}$
изобарный	$p(V_2-V_1)$	$nC_p(T_2-T_1)$	$\frac{V}{T} = \text{const}$
адиабатиче ский	$nC_V(T_1-T_2)$	0	$pV^{\gamma} = \text{const}$ $TV^{\gamma-1} = \text{const}$ $Tp^{\frac{\gamma-1}{\gamma}} = \text{const}$ $\gamma = C_p / C_v$