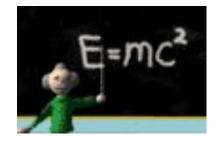
The Système International


SI Units

GEL2006

More free powerpoints at www.worldofteaching.com

Base Quantity		Base Unit	
Name	Symbol	Name	Symbol
Time	t	second	S
Length		metre	m
Mass	m	kilogram	kg
Temperature	Т, Ө	kelvin	K
Electric Current	Ι	ampere	A
Amount of Substance	n	mole	mol
Luminous Intensity	(not in A Level)	candela cd	

Physical Quantity	Defined as :	Unit	Special Name
velocity		m/s	meter per second
acceleration			
density			
momentum			
force			
pressure			
work (energy)			
power			
electrical charge			
potential difference			
resistance			

- Nm = kg kgms⁻²kg⁻¹ m
- kgms⁻² m = kgm²s⁻²
- $\underline{\text{kgm}^2 \underline{s}^{-2}} = \underline{\text{kgm}^2 \underline{s}^{-2}}$
- . This equation is homogenous

- $v^2 = u^2 + 2ax$ • $m^2 s^{-2} = m^2 s^{-2} + ms^{-2} m$
- $\underline{m^2 \underline{s^{-2}}} = \underline{m^2 \underline{s^{-2}}} + \underline{m^2 \underline{s^{-2}}}$

• . This equation is homogenous

- F = $\underline{m} v$ | |r|• N = kg ms⁻¹ m⁻¹
- $\underline{kgms}^{-2} = \underline{kgs}^{-1}$

• . This equation is <u>not</u> homogenous

• What is missing? $kgms^{-2} = kgs^{-1}$

 $ms^{-1} = v \text{ on rhs}$

• . The equation should read:

• F = <u>mv²</u> r

• Try these:

• $E_{k} = \frac{1}{2} \text{ m v}^{2}$

 $J = kg m^{2}s^{-2}$ N m = kg m^{2}s^{-2} <u>kg m^{2}s^{-2} = kg m^{2}s^{-2} OK</u>

• and $v = u + at^2$ $\underline{ms}^{-1} = \underline{ms}^{-1} + \underline{m}$ Not OK s^{-1} is missing, so equation should read: V = u + at

Show that these equations are homogenous a) x = ut + $\frac{1}{2}at^{2}$ b) T = $2\pi\sqrt{l/g}$ c) v = $f\lambda$ d) I = nAvee) W = $\frac{1}{2}CV^2$ What is missing here? f) F = mv - mu