ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ

Лектор Проскуряков Константин Николаевич

• Основная литература:

- 1. Проскуряков К.Н. Ядерные энергетические установки.
 М.: Издательский дом МЭИ, 2015. 446 с.
- 2. Проскуряков К.Н., Использование виброакустических шумов для диагностики технологических процессов в АЭС.
 М.: Изд-во МЭИ, 1999. – 68 с.
- 3. Г.В. Аркадов, В.И. Павелко, Б.М. Финкель. Системы диагностирования ВВЭР.М.: Энергоатомиздат, 2010. 391 с.
- Дополнительная литература:
- 4. АЭС с реактором типа ВВЭР-1000. От физических основ эксплуатации до эволюции проекта. /Андрушечко С. А., Афров А. М., Васильев Б. Ю. и др.//Изд-во: Логос, 2010. 488 с.

Балльно-Рейтинговая структура дисциплины

- Перечень контрольных мероприятий текущего контроля успеваемости по дисциплине:
- КР-1 контрольная работа 1; Вес раздела 0,25
- КР-2 контрольная работа 2; Вес раздела 0,25
- КМ-3 контрольная работа 3; Вес раздела 0,25
- КМ-4 контрольная работа 4. Вес раздела 0,25

Темы контрольных работ и номер недели

- КР1: Состояние и перспективы развития ЯЭ. Ядерные реакции.
 Нейтронно-физические процессы в ядерном реакторе (ЯР).
 Управление реактором. Особенности реактора как источника энергии.
 4 неделя; СРС
 6 часов
- КР2: Топливный цикл ЯЭ. Классификация ЯЭУ. Функционирование АЭС, аварийные защиты, системы безопасности.
- Нормы радиационной безопасности; примеры решения практических задач. Вывод из эксплуатации.
 8 неделя; СРС 6 часов
- КР3: Сравнительный анализ АЭС с реакторами ВВЭР, РБМК, БН и БРЕСТ. Проекты АЭС с ВВЭР. Судовая, космическая и малая ЯЭ. **12 неделя**; СРС 6 часов
- КР4: Актуальные проблемы ЯЭ:
- продление срока службы,
- обеспечение замкнутого топливного цикла;
- повышение безопасности, сейсмостойкости;
- совершенствование методов и систем диагностики; управления технологически ми процессами и тяжелыми авариями.
- **15 неделя**; CPC 4 часа

•

• Ядерные энергетические установки (Консультация),

B-308

нед.: 6, 8, 10, 12

Лекция 1. Современное состояние атомной энергетики и перспективы развития в мире

- Обеспечение человечества энергией является одной из главнейших проблем, решение которой определяет его устойчивое развитие, т.е. развитие без истощения природных, экономических, экологических и социальных ресурсов.
- Энергетика, построенная на углеводородах, исторически себя исчерпала. Запасы ископаемого топлива сокращаются, а продолжение его использования в качестве энергоисточника ухудшает экологическую ситуацию.
- Огромным преимуществом АЭС является ее относительная экологическая чистота

- Из табл. 1.1 видно, сколь огромны выбросы вредных веществ ТЭС, работающих на различных органических топливах
- Сравнительные данные по топливу и отходам для АЭС мощностью 1000 МВт (тонн в год):топливо :27 (160 т. природного урана в год), отходы: 27 высокоактивные; 310 среднеактивные; 460 низкоактивные
- Подобные выбросы на АЭС просто отсутствуют. Если ТЭС мощностью 1000 МВт потребляет в год 8 млн. т. кислорода для окисления топлива, то АЭС не потребляет кислорода вообще.

Табл. 1.1 Выбросы вредных веществ ТЭС, работающих на различных органических топливах

Годовые выбросы от ТЭС мощностью 1000 МВт, т

Таблица 5.3 Вид выбросов	Тип ТЭС				
	Пылеугольная	Мазутная	Газовая		
Сернистые газы	138 000	98000	13		
Оксиды азота	20900	21800	12200		
Оксид углерода	500	9	_		
Углеводороды	210	680	_		
Альдегиды	50	120	30		
Золовая пыль	4500	730	450		
Суммарные выбросы	164 800	121 300	12700		

Стоимости капитальных затрат на установленный kW

Технология	Капитальные затраты (\$/ <u>kW</u>)	Эксплуатационные затраты (\$/ <u>kWh</u>)	
Турбоустановки со сжиганием угля	\$500 - \$1000		
Газотурбинный цикл	\$400 - \$800	0,02 - 0,04	
Комбинированный цикл на газифицированном угле (IGCC)	\$1000 - \$1500	0,04 - 0,08	
Парогазовый цикл	\$600 - \$1200	0,04 - 0,10	
Ветряные энергоустановки (включая морские)	\$1200 - \$5000	<0,01	
Ядерная	\$1200 - \$5000	0,02 - 0,05	
Солнечная энергия	\$4500 и выше	<0,01	
Гидроэнергетика	\$1200 - \$5000	<0,01	

Типы и количество ядерных реакторов, находящихся в эксплуатации и строительстве приведены в табл. 1.2

- В 31 стране мира действуют 442 ядерных реактора, общей электрической мощностью 365 ГВт.
- Первая в мире атомная электростанция мощностью 5 МВт построена в городе Обнинске и пущена в эксплуатацию 27 июня 1954 года.

Таблица 1.2

Типы и количество ядерных реакторов, находящихся в эксплуатации и строительстве

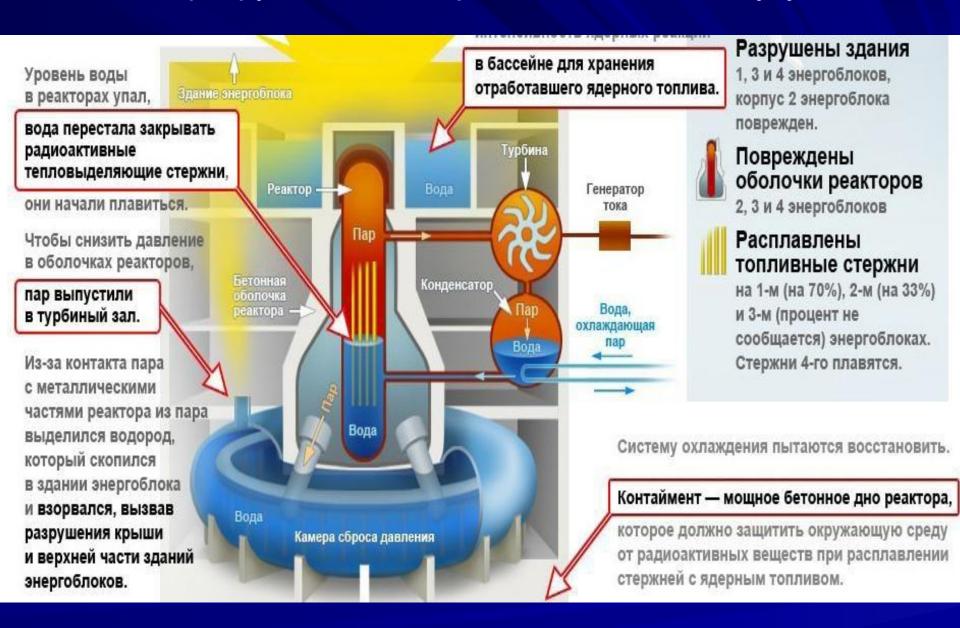
Тип реактора Международ названия	Межлунаполное	ународное, Страны	Работающие реакторы		Строящиеся реакторы		Основные характеристики		
	название	размещения	Кол-	ГВт (эл.)	Кол-во	ГВт (эл.)	Топливо	Охладитель	Замедлитель
Водо-водяной энергетический реактор (ВВЭР)	Water Cooled Water Moderated Power Reactor (WER)	Россия, Украина, Финляндия, Болгария, Чехия, Армения, Словакия	53	35,87	10	9,5	обогащенный уран	вода	вода
Легководный реактор с водой под давлением	Pressurized Water Reactor (PWR)	США, Франция, Япония и др.	214	205,37	2	2,5	обогащенный уран	вода	вода
Легководный кипящий реактор	Boiled Water Reactor (BWR)	США, Япония, Швеция и др.	93	83	3	3,6	обогащенный уран	вода	вода
Реактор с газовым охлаждением; газографитовы й реактор	Advanced Gas- cooled Reactor (AGR): Magnox	Великобритания	22	10,66	-	~	обогащенный уран	CO ₂	графит
Реактор с тяжеловодным замедлителем и теплоносителем под давлением (CANDU и др)	Pressurized Heavy-Water (Moderated and Cooled) Reactor (PHWR) Canadian Deuterium Uranium (CANDU)	Канада, Индия и др.	40	20,477	7	2,6	естественный уран	тяжелая вода	тяжелая вода
Уран- графитовый реактор канального типа - РБМК	Light-Water- Cooled Graphite- Mode-Rated Reactor (LWGR)	Россия	16	11,4	1	0,9	обогащенный уран	вода	графит
Реактор на быстрых нейтронах	Fast Breeder Reactor	Япония, Франция, Россия	3	1	1	0,47	плутоний и уран	жидкий натрий	-
ВСЕГО			441	368	24	20		50	

Легководные реакторы трех типов (PWR, BWR, VVER) составляют 80% реакторного парка мира.

1.2. Состояние ядерной энергетики в России

- Наличие собственных эффективных ядерных технологий и атомного машиностроения является одним из главных элементов обеспечения национальной энергетической безопасности.
- Первая в мире атомная электростанция мощностью 5 МВт построена в городе Обнинске и пущена в эксплуатацию 27 июня 1954 года, после чего в стране быстрыми темпами начала развиваться ядерная энергетика
- В Таблице 1.3 представлена Структура АЭС России
- дополнение НВАЭС в 2016г. 1X1200;Ростовская АЭС1X1000 в 2010г. и в 2014г. Калининская АЭС 1X1000 в 2012г.
- Энергоблоки АЭС, сооружаемые и планируемые в настоящее время представлены на рис.1.1.

Таблица 1.3 Структура АЭС России


АЭС	Суммарная мощность, МВт	Структур а установленной мощности	Типреактора	Годы пуска первого и последнего блоков
Балаковская	4000	4 энергоблока по 1000 МВт	BB3P-1000	1985, 1993
Нововоронежская	1880	2 энергоблока по 440 МВт 1 энергоблок 1000 МВт	BB3P-440 BB3P-1000	1971,1972 1980
Кольская	1760	4 энергоблока по 440 MBт	BB'3P-440	1973,1984
Ростовская	1000	1 энергоблок 1000 МВт	BB3P-1000	2002
Калининская	3000	3 энергоблока по 1000 МВт	BB3P-1000	1984,2004
Ленооградская	4000	4 энергоблока по 1000 МВт	PEMK-1000	1973,1981
Смоленская	3000	3 энергоблока по 1000 МВт	PEMK-1000	1982.1990
Курская	4000	4 энергоблока по 1000 МВт	PEMK-1000	1976.1985
Билибинская	48	4 энергоблока по 12 МВт	эгп-6	1974,1976
Белоярская	600	1 энергоблок 600 МВт	БН-600	1980

БЕЗОПАСНОСТЬ АТОМНОЙ ЭНЕРГЕТИКИ

- В 1979 г. на АЭС «Три Майл Айленд» (США) произошла авария с расплавлением активной зоны реактора.
- Принятые меры по увеличению безопасности АЭС привели к заметному удорожанию их электроэнергии.
- Еще более серьезный удар развитию атомной энергетики нанесла авария на Чернобыльской АЭС в 1986 г. и ее катастрофические последствия.В ряде стран был принят мораторий на строительство новых АЭС.
- Авария на АЭС Фукусима-1 крупная радиационная авария, произошедшая 11 марта2011 года в результате сильнейшего землетрясения в Японии. Схема разрушений и повреждений на АЭС Фукусима-1 приведена на рис.1.3. Все это привело к мощному выбросу радиации, заразившей обширную зону вокруг станции. Агентство по атомной и промышленной безопасности относит аварию на АЭС "Фукусима-1" к высшему, седьмому, уровню опасности. Ранее он был присвоен только катастрофе на Чернобыльской АЭС.

Схема разрушений и повреждений на АЭС Фукусима-1

Стратегия развития атомной энергетики России в первой половине XXI века

- Современная ядерная энергетика базируется на тепловых реакторах. Это ограничивает возможности ядерной энергетики в будущем. При планируемой к 2030 г. суммарной мощности АЭС России 60 ГВт, они будут обеспечены дешевым ядерным топливом в течение 60 лет.
- Оценка мировых запасов природного урана показывает, что на них нельзя базировать долговременное устойчивое развитие ядерной энергетики на тепловых реакторах.
- Поэтому в будущем ядерная энергетика будет широко использовать технологию реакторов на быстрых нейтронах с замкнутым топливным циклом. В России имеется в эксплуатации энергоблоки БН-600 и БН-800.

Главный недостаток АЭС — тяжелые последствия аварий в реакторном отделении с его разгерметизацией и выбросом радиоактивных веществ в атмосферу с заражением громадных пространств.

Подобно тому, как ТЭС имеет отходы в виде золы и других выбросов, АЭС также имеет отходы, однако они особого вида. Это в первую очередь отработавшее ядерное топливо, а также другие радиоактивные остатки. Эти отходы утилизируют: сначала их выдерживают в специальных бассейнах для уменьшения радиоактивности, а потом направляют на переработку на радиохимические заводы, где из них извлекают ценные компоненты, в том числе и несгоревшее в реакторе топливо.

Для обеспечения радиационной безопасности АЭС оборудуют специальной приточно-вытяжной системой вентиляции, сложность которой не идет ни в какое сравнение с вентиляционной системой ТЭС Серьезной проблемой для АЭС является их ликвидация после выработки ресурса, которая по оценкам может составлять до 20 % стоимости их

строительства •

- По оценкам Европейской Комиссии, ежегодно страны Европейского Союза вынуждены утилизировать 1 млрд. куб. метров промышленных отходов и 50 тыс. куб. метров радиоактивных.
- Проблема заключается в том, что радиоактивный мусор остается опасным на протяжении сотен и тысяч лет.
- К примеру, период полураспада радиоактивного стронция-90 составляет 26 лет, америция-241 430 лет, плутония-239 24 тыс. лет.

- Возможно захоранивать отходы на океанском дне.
- Недостаток этого предложения заключается в том, что подобные могильники должны находиться на значительных глубинах, вдалеке от побережий.
- Однако контейнеры с отходами могут быть легко повреждены, их также будет сложно обнаруживать (если, например, один из них "даст течь" или когда-либо появится технология, позволяющая утилизировать отходы иным способом).
- Кроме того, следить за этими могильниками (например, чтобы их не могли использовать террористы или страныизгои) достаточно проблематично.
- В 1972 году была принята Международная Конвенция о Предупреждении Загрязнения Моря Отходами, которая запрещает подобные опыты. Срок действия Конвенции истекает в 2018 году.

- Вторая идея вывоз ядерных отходов в космосвозможность вывода на околосолнечную орбиту контейнеров. Эта идея имеет неоспоримое достоинство подобным образом радиоактивный мусор удаляется с планеты Земля.
- Однако одновременно возрастает риск к примеру, никто не может гарантировать, что возможное попадание этого вещества на Солнце не приведет к каким-либо негативным последствиям или что космический мусоровоз не столкнется с метеоритом или космическим кораблем.
- Главным аргументом противников этой идеи остается ее невероятно высокая стоимость: при нынешнем уровне развития космонавтики для того, чтобы избавить человечество от отходов, потребуется несколько десятков тысяч запусков космических аппаратов.

- Третья идея вывоз отходов на какойлибо удаленный и ненаселенный остров.
- Здесь также есть проблемы: ядерный могильник может быть создан только в твердых геологических породах, для него требуется значительная территория. Остров должен находиться вдалеке от густонаселенных мест. Участков суши, отвечающих подобным требованиям, крайне мало.
- Обеспечивать безопасную океанскую транспортировку и охрану хранилища также сложно. Впрочем, Финляндия строит подобный могильник на небольшом гранитном островке.

- Четвертый вариант решения проблемы предусматривает строительство могильников среди льдов Антарктиды или Гренландии.
- Предполагается, что в этом случае не потребуется дорогостоящее строительство достаточно будет построить шахту, которая будет накрыта тем же льдом.
- Достоинствами этой идее является незаселенность этих территорий и толщина материкового льда.
- Недостатки также существенны: льды могут таять (с учетом глобального потепления это становится все более вероятным), благодаря чему радиоактивные воды могут попасть в мировой океан.
- Доставка огромного количества подобных грузов в приполярные области, где нет коммуникаций, также является серьезнейшей проблемой.
- И последнее, подписанный в 1959 году Антарктический Договор запрещает размещение радиоактивных отходов на территории Шестого Континента.

 Московский Энергетический Институт Кафедра АЭС

- Пятый вариант строительство подземных хранилищ в скальных породах ныне считается наиболее удобным и приемлемым.
- К примеру, Национальный Исследовательский Совет США\National Research Council в 2001 году вынес следующий вердикт: "Подобный метод остается единственным научно и технически обоснованным долговременным решением проблемы радиоактивных отходов".
- Многие страны на протяжении десятилетий проводят исследования, целью которых является проверка безопасности мест, реально используемых или предназначенных для использования в качестве подобных могильников. К примеру, в Германии одно хранилище (Ассе) исследуется с 1965 года, в Швейцарии (Гримсель) с 1984-го.

- Единственно всеобще признанной возможностью избавления человечества от этого вида отходов на сегодняшний день представляется глубокое захоронение таких отходов в могильниках на глубине не менее 300-500 м в глубоких геологических формациях с соблюдением принципа многобарьерной защиты и обязательным переводом жидких отходов в отвержденное состояние.
- Наиболее подходящими по совокупности своих свойств геологическими формациями являются
- массивы каменных солей,
- глинисто-аргиллитовые формации,
- кристаллические (скальные) массивы (в частности, гранито-гнейсы),
- а также туфы.

- Особенностью ВАО является то, что они содержат в своем составе,
- с одной стороны, относительно короткоживущие, но исключительно токсичные и тепловыделяющие элементы цезий-стронциевой группы,
- а с другой стороны, долгоживущие элементы трансурановой группы.

- Рассматривается вариант раздельного захоронения тепловыделяющих цезийстронциевых и долгоживущих трансурановых отходов.
- Первые предлагается размещать в глубоких скважинах в гранитах. Для этой цели исследователем проведены модельные эксперименты по расплавлению и последующей рекристаллизации гранитов, которые доказывают принципиальную возможность такого размещения тепловыделяющего компонента ОЯТ.
- Существует мнение, что такое разделение могло бы существенно облегчить решение проблемы долговременного (до 10000 лет) глубокого геологического захоронения другой, трансурановой составляющей ВАО.

- Тем не менее, реальность сегодняшнего дня такова, что
- разделение этих двух групп элементов пока технологически не достижимо,
- и специалистам в ближайшие десятилетия, видимо, придется иметь дело с ВАО смешанного состава,
- для которых единственно реальным решением является глубокое геологическое захоронение в специально оборудованные могильники.