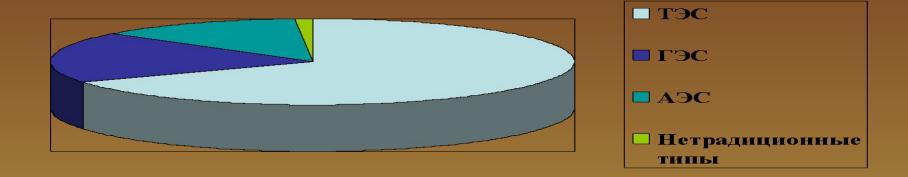
Электроэнергетика России

Задачи урока:

- 1. Определить роль и значение энергетики
- 2. Познакомиться с понятием «энергосистема»
- 3. Рассмотреть особенности размещения по территории страны электростанций разного типа

- 1. Свердловская область
 - 2. Хабаровский край
 - 3. Республика Карелия
 - 4. Ростовская область
 - 5. Республика Саха
 - 6. Алтайский край
 - 7. Приморский край


План характеристики электростанции

- 1. Вид электростанции
- 2. На каких ресурсах работает
- 3. Крупнейшие электростанции
- 4. Их недостатки и преимущества

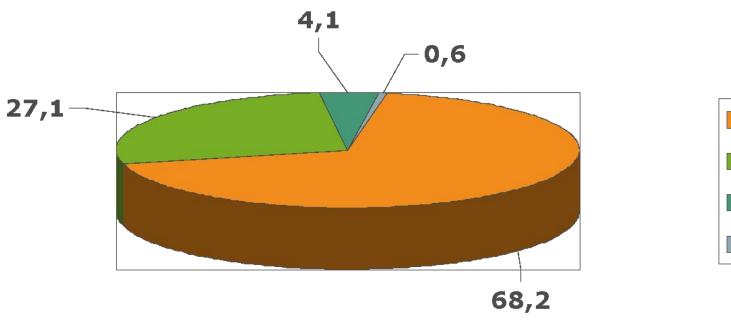
Электроэнергетика – отрасль, которая производит электроэнергию на электростанциях и передаёт её на расстояние по линиям электропередач (ЛЭП).

Электроэнергетика – отрасль, которая производит электроэнергию на электростанциях и передаёт её на расстояние по линиям электропередач (ЛЭП).

Структура электроэнергетики России.

Виды электро- станций	На каких ресурсах работает	Крупнейшие электростан-ции	Их недостатки

Тепловые электростанции (ТЭС) преобразуют энергию топлива в электрическую.



Троцентное соотношение видов топлива на 2003 год

Тепловые электростанции

Конденсационны е электрические станции (КЭС)

Теплоэлектроцентрали (ТЭЦ)

Классификация:

• По типу реактора – реакторы на тепловых нейтронах, реакторы на быстрых нейтронах, субкритические реакторы, термоядерные реакторы.

Балаковская АЭС

Местонахождение

<u>Балаково</u>Балаково, <u>Саратовская область</u>

Начало строительства

<u>1977 год</u>

Начало эксплуатации

28 декабря 28 декабря

1985 года

Эксплуатирующая организация

<u>Росэнергоатом</u>

Технические параметры

Количество энергоблоков

4

Строится энергоблоков 2, строительство законсервировано с

<u>1992 года</u>

Тип реакторов

BB3P-1000

Эксплуатируемых

4

реакторов

4000 <mark>МВт</mark>

Генерирующая мощность

Прочая информация

Сайт Балаковская АЭС

Белоярская АЭС

Местонахождение

<u>Заречный</u>Заречный, Свердловская область

Начало строительства

августавгуст 1957 года

Начало эксплуатации

26 апреля **1964**

года

Конец эксплуатации

2020 (блок III)^[1]

Эксплуатирующая организация

Росэнергоатом

Технические параметры

Количество энергоблоков 3

Строится энергоблоков 1

Тип реакторов <u>АМБ</u>АМБ, <u>БН</u>

Эксплуатируемых реакторов

1

Генерирующая мощность

600 <u>МВт</u>

Билибино, Чукотский АО Местонахождение

1966 год Начало строительства

Начало эксплуатации <u>1974 год</u>

2019 (блок I) — 2021 (блок Конец эксплуатации

IV)[1]

Эксплуатирующая организация

<u>Росэнергоатом</u>

Технические параметры

Количество энергоблоков 4

Строится энергоблоков 0

Тип реакторов ЭГП-6

Эксплуатируемых реакторов

Генерирующая мощность 48 MBT

Прочая информация

3

Сайт Билибинская АЭС

Калининская АЭС

Местонахождение

Россия

Начало строительства

1978 год

Начало эксплуатации

1984 год

Конец эксплуатации

2014 (блок I) — 2034 (блок

|||)<mark>[1]</mark>

Эксплуатирующая организация

<u>Росэнергоатом</u>

Технические параметры

Количество энергоблоков 3

Строится энергоблоков 1

Тип реакторов ВВЭР-1000

Эксплуатируемых реакторов

3

Генерирующая мощность

3000 MBT

Кольская АЭС

Местонахождение

<u>Полярные Зори</u>Полярные Зори, <u>Мурманская</u>

область

Начало строительства

<u>18 мая</u>18 мая <u>1969 года</u>

Начало эксплуатации

<u>29 июня</u>29 июня <u>1973</u>

<u>года</u>

Конец эксплуатации

2011 (блок III) — 2019 (блок

11)[1]

Эксплуатирующая организация

<u>Росэнергоатом</u>

Технические параметры

Количество энергоблоков 4

Строится энергоблоков 0

Тип реакторов ВВЭР

Эксплуатируемых реакторов

4

Генерирующая мощность

1760 <u>МВт</u>

Прочая информация

Сайт Кольская АЭС

Курская АЭС

Местонахождение

Россия

Начало строительства

1971 год

Начало эксплуатации

1976 год

Конец эксплуатации

2014 (блок I) — 2034 (блок

III)^[1]

Эксплуатирующая организация

Росэнергоатом

Технические параметры

Количество энергоблоков 4

Строится энергоблоков 1

Тип реакторов РБМК-1000

Эксплуатируемых реакторов

Генерирующая мощность

4000 MBT

Прочая информация

4

Сайт Курская АЭС

Ленинградская АЭС имени В. И. Ленина

Местонахождение

Начало строительства

Начало эксплуатации

Конец эксплуатации

Эксплуатирующая организация Россия

6 июля6 июля 1967 года

23 декабря 23 декабря

<u>1973 года</u>

2019 (блок I) — 2026 (блок

IV)[1]

Росэнергоатом

Технические параметры

Количество энергоблоков 4

Строится энергоблоков 2

Тип реакторов

<u>РБМК-1000</u>РБМК-1000, строящиеся <u>ВВЭР-1200</u>

Эксплуатируемых

реакторов

Генерирующая мощность 4000 МВт

Прочая информация

Сайт Ленинградская АЭС

Нововоронеж ская АЭС

Местонахождение

Россия

Начало строительства

1958 год

Начало эксплуатации

сентябрьсентябрь 1964

года

Конец эксплуатации

2016 (блок III) — 2035 (блок

IV)[1]

Эксплуатирующая организация

Росэнергоатом

Технические параметры

Количество энергоблоков 5

Строится энергоблоков

ввэр

Тип реакторов

2

Эксплуатируемых реакторов

3

Генерирующая мощность

1880 MBT

Награды

Прочая информация

Сайт Нововоронежская АЭС

Ростовская АЭС

Местонахождение

<u>Волгодонск</u>Волгодонск, <u>Ростовская область</u>

Начало строительства

<u>1977 год</u>

Начало эксплуатации

2001 год

Эксплуатирующая организация

Росэнергоатом

Технические параметры

Количество энергоблоков

2

2

Строится энергоблоков

BB3P-1000

Эксплуатируемых

Тип реакторов

2

реакторов

2 000 MBT

Генерирующая мощность

Смоленская АЭС

Местонахождение

Россия

Начало строительства

1976 год

Начало эксплуатации

<u>25 декабря</u>25 декабря <u>1982</u>

года

Конец эксплуатации

2013 (блок I) — 2020 (блок

III)^[1]

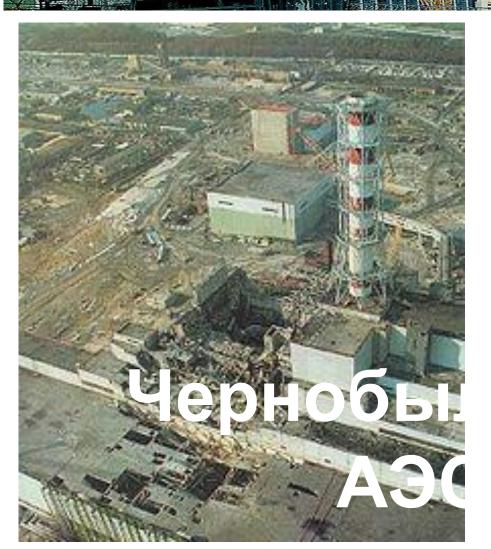
Эксплуатирующая организация ОАО «Концерн Росэнергоатом»

Технические параметры

Количество энергоблоков 3

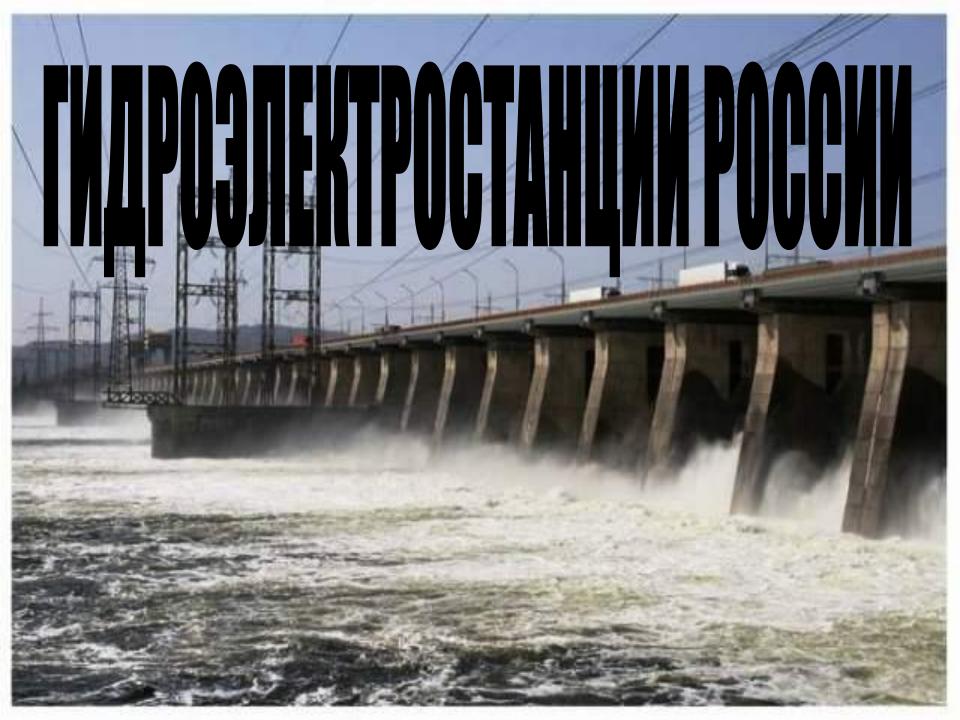
Строится энергоблоков 0

Тип реакторов <u>РБМК</u>


Эксплуатируемых реакторов

3

Генерирующая мощность


3000 MBT

Katactpoda XX Beka

Гидроэлектростанция (ГЭС)

- Около 23% электроэнергии во всем мире вырабатывают ГЭС. Они преобразуют кинетическую энергию падающей воды в механическую энергию вращения турбины, а турбина приводит во вращение электромашинный генератор тока.
- Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки.

Принцип работы

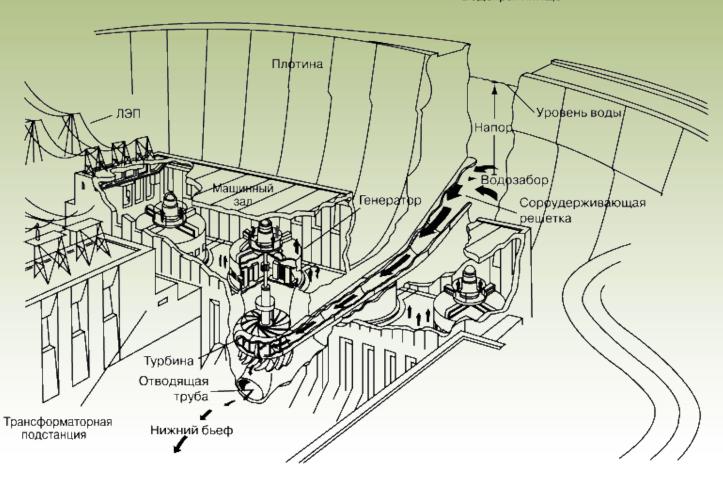

• Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Схема ГЭС

Водохранилище

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

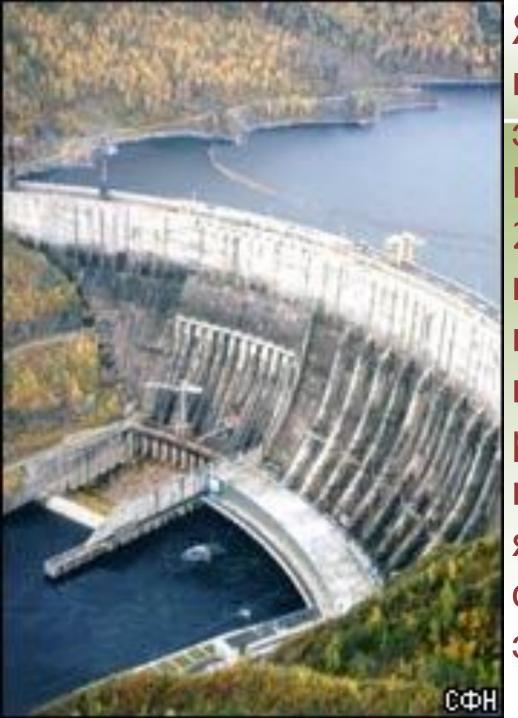
- мощные вырабатывают от 25 МВТ до 250 МВт и выше;
- средние до 25 МВт;
- малые гидроэлектростанции до 5 МВт.
- Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

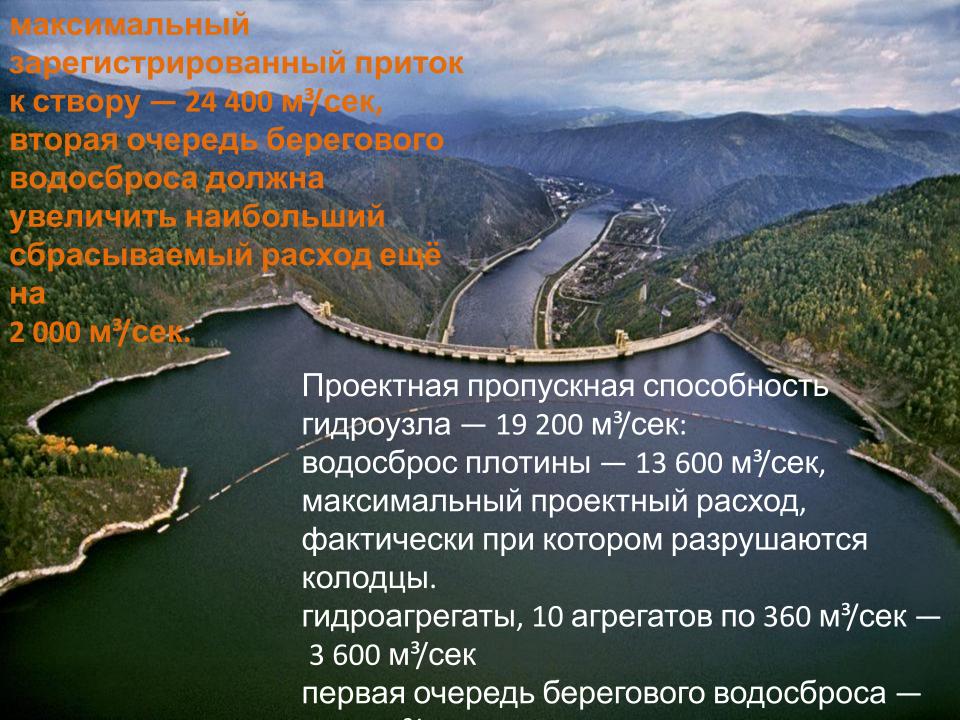
- высоконапорные более 60 м;
- средненапорные от 25 м;
- низконапорные от 3 до 25 м.

THE TOTAL POECH NOTICE TO BE THE TOTAL PROPERTY.

Наименование	Установленная мощность, МВт
Саяно-Шушенская ГЭС	6400
Красноярская ГЭС	6000
Братская ГЭС	4500
Усть-Илимская ГЭС	3840
Волгоградская ГЭС	2541
ВОГЭС им. Ленина	2300
Чебоксарская ГЭС	1370
Саратовская ГЭС	1360
Зейская ГЭС	1330
Нижнекамская ГЭС	1205
Загорская ГАЭС	1200
Воткинская ГЭС	1020
Чиркейская ГЭС	1000


Bapun u spouguetbua la l'éle

- <u>9 октября</u> 9 октября <u>1963 года</u> 9 октября 1963 года одна из крупнейших гидротехнических аварий на <u>плотине Вайонт</u> в северной Италии.
- <u>12 сентября</u> 12 сентября <u>2007 года</u> на Новосибирской ГЭС произошел крупный пожар на одном из трансформаторов по причине замыкания и вследствие этого возгорания битума и обшивки трансформатора.
- <u>3 августа</u>3 августа <u>2009 года</u>3 августа 2009 года возгорание на трансформаторе напряжения открытого распределительного устройства 200 кВ <u>Бурейской ГЭС</u>.
- <u>16 августа</u> 16 августа <u>2009 года</u> 16 августа 2009 года пожар в мини-АТС <u>Братской ГЭС</u>, выход из строя аппаратуры связи и телеметрии ГЭС (Братская ГЭС входит в тройку крупнейших ГЭС России).
- <u>17 августа</u> 17 августа <u>2009 года</u> 17 августа 2009 года <u>крупная авария</u> 17 августа 2009 года крупная авария на <u>Саяно-</u> <u>Шушенской ГЭС</u> (Саяно-Шушенская ГЭС самая мощная электростанция России).


Является самой мощной электростанцией в России. До аварии 2009 года производила 15 процентов энергии, вырабатываемой на российских гидроэлектростанци ях и 2 процента общего объёма электроэнергии.

Состав сооружений ГЭС: бетонная арочно-гравитационная плотина высотой 245 м, длиной 1 066 м, шириной в основании — 110 м, шириной по гребню 25 м.

Плотина включает левобережную глухую часть длиной 246,1 м, станционную часть длиной 331,8 м, водосливную часть длиной 189,6 м и правобережную глухую

бондовые заграждения Саяно-Шушенской ГЭС эксплуатировались около 20 лет и требовали капитального ремонта, а износ отдельных элементов запаней составлял

В 8:13-8:15местно времени 17 августа 2009 года на станции произошла авария на гидроагрегате № 2 с его разрушением и поступлением большого количества воды в помещение

машинного зала. Также получили сильные повреждения агрегаты № 7 и 9, здание машинного зала частично обрушилось, его конструкции завалили агрегаты № 3, 4 и 5.

В результате аварии погибло 75 человек.

Какой тип электростанций преобладает в России?

В чём отличие ТЭС от ТЭЦ? Каков принцип размещения ТЭС? Где строят ТЭЦ?

В чём преимущества и недостатки ТЭС?

В чём преимущества и недостатки ГЭС?

Где можно строить ГЭС?

В чём преимущества АЭС?

Что называется энергосистемой?

Для чего создаются энергосистемы?

Домашнее задание:

§9 подготовить сообщений на темы Сообщения «Энергия ветра», «Солнечная энергия».