МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 9 им. А. М. ЦЕБИЕВА» г. ГРОЗНОГО

Исследовательский проект по географии Тема: ВОЛНЫ В ОКЕАНЕ

Выполнила ученица 6 «Б» класса Яхиева Хапта Руководитель: Дерезова Т.Б-А.

Содержание

Виды волн

Различают три типа волн:


Ветровые (преобладают на поверхности океанов и морей).

Анемобарические (стоячие или сейши).

Сейсмические, происходящие в результате землетрясений и моретрясений, одним из видов таких волн являются цунами.

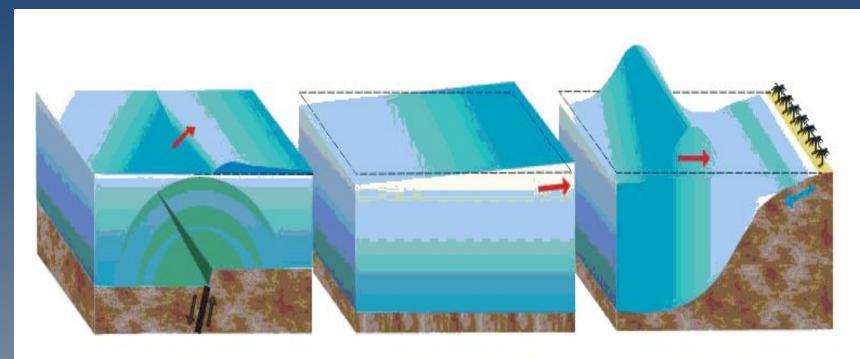
Ветровые волны

Вода в океане находится в непрерывном движении. Одна из главных причин движения воды — ветер. Даже слабый ветер вызывает на поверхности воды волны. Каждая волна имеет гребень и подошву. Расстояние между соседними гребнями — длина волны. Расстояние от подошвы до гребня — высота волны.

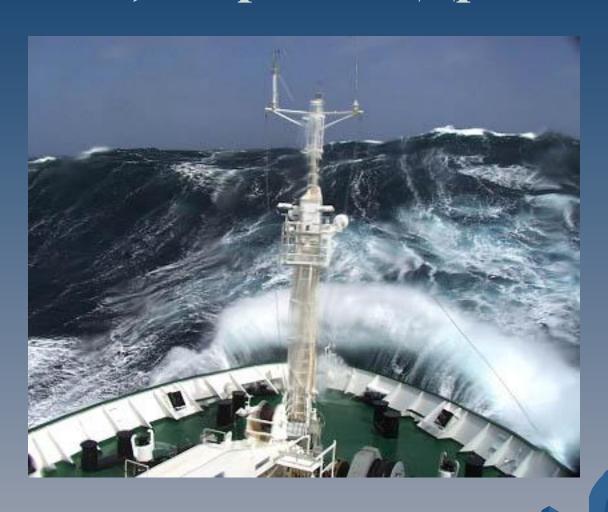
Высота ветровых волн

Высота ветровых волн не более 4 м. В морях она ниже чем в океане. С глубиной высота ветровых волн быстро уменьшается, и на глубине равной длине волны, волнение уже не заметно. Вода в волнах опускается и поднимается почти не перемещаясь в горизонтальном направлении. Это движение воды по вертикали, т.е. колебательное.

Цунами


Цунами у побережья о.Шри- Ланка 26 декабря 2004 г.

Цунами


Это особый класс поверхностных гравитационных волн, распространяющихся в океане на большие расстояния от места своего возникновения. Дословный перевод слова «цунами» с японского означает «большая волна в гавани». Опасность, таким образом, грозит не судам в открытом океане, а прибрежным районам суши, в первую очередь портовым сооружениям, прибрежным населенным пунктам и промышленным объектам, а также судам у причала. В глубоком океане высота волн цунами не превышает десятка сантиметров, на шельфе волны замедляются, укорачиваются, высота их увеличивается, а в прибойной зоне их высота может достигать десятков метров. Прогнозировать с достаточной точностью высоту цунами у берега современная наука пока еще не в состоянии.

Образование цунами

Подводная сейсмическая активность. Волна движется глубоко под водой с огромной скоростью. Бег волны замедляется, волна "вырастает".

Гигантская волна (высотой около 20 м) в проливе Дрейка

«Волны-убийцы»

Представляющие опасность для судов и морских сооружений, имеют большие абсолютные высоты. Эксперты выделяют «классические аномальные» волны, т.е. волны больших амплитуд, которые могут быть предсказаны в рамках теории однородных квазистационарных случайных процессов и собственно «волны-убийцы», появление которых не описывается существующими теориями случайных процессов. Важное обстоятельство, которое позволяет выделить феномен волн-убийц в отдельную научную и практическую тему и, таким образом, отделить от других явлений, связанных с волнами аномально большой амплитуды (например, цунами) – появление "волн-убийц" из ниоткуда. В отличие от цунами, возникающих в результате подводных землетрясений и оползней, появление "волнубийц" не связано с катастрофическими геофизическими событиями. Эти волны могут появляться при малых ветрах и относительно слабом волнении, что приводит к идее о том, что само явление "волн-убийц" связано с особенностями динамики самих морских волн и их трансформации при распространении в океане.

Океан вздымает волны...

Океан вздымает волны, страшен в гневе океан! Кораблю укрыться негде, бьет о борт девятый вал! Гнутся мачты, рвутся снасти, через палубу вода... Паруса в выси кружатся, как осенняя листва.

Канонада грома с треском ударяет о корму, И трещит по швам обшивка, что бумага на ветру. Гнутся мачты, но не гнется корабельный экипаж, Пусть хоть гневается небо, пусть хоть черт вошел в кураж.

По волнам бросает щепку, что зовется кораблем, И свистит над морем ветер заливаясь соловьем. Солнца луч пробил сквозь тучу незначительную брешь, Слышен голос в свисте ветра: "Ну-ка, шторм, сильнее врежь!"

Рекорды Земли

Самый высокий морской прилив наблюдается в заливе Фанди (Атлантическое побережье Канады) и составляет 19,6 м, что равно высоте шестиэтажного здания. Дважды в сутки наступает, а потом отходит назад масса воды весом в 100 млрд т.

Самая большая волна, когда-либо зафиксированная людьми, наблюдалась около Японского острова Исигаки в 1971 г. Волна имела высоту 85 метров.

В Тихом океане наблюдаются самые большие волны. Весной 1972 г. в шторм были зафиксированы волны высотой более 34 м. Они следовали одна за другой через каждые 20 секунд со скоростью 138 км/ч. Что же касается волн, вызванных землетрясениями, цунами, то они здесь значительно выше. Рекордной высоты достигла волна у японского острова Исигаки (архипелаг Рюкю) во время землетрясения 24 апреля 1971 г. — 85 м при скорости 700 км/ч.

Самые бурные широты — в Мировом океане — южные широты, так называемые «ревущие сороковые» (от 40° до 50°) и «неистовые пятидесятые» (от 50° до 60°).

Места высоких приливов

Место	Государство	Высота подъема воды, м
Залив Фанди	Канада	19,6
Устье реки Гальегос	Аргентина	18,0
Фробишер-Бей	Канада	17,4
Устье реки Северн	Великобритания	16,3
Гранвиль	Франция	14,7
Кинг, залив	Австралия	14,4
Сен-Мало	Франция	14,1
Пенжинская губа	Россия	13,2
Камбейский залив	Индия	12,5
Устье реки Колорадо	Мексика	12,1

Заключение

Тропические циклоны, среди которых видное место занимают тайфуны западной части Тихого океана, оставляют след не только на поверхности, но и в толще воды, до глубины примерно 0,5 км, причем сохраняется он в течение нескольких недель. След этот незаметен для человеческого глаза, но хорошо выражен в инструментальных измерениях состояния океанской воды, и прежде всего — её температуры. Вдоль пути следования тропического циклона происходит интенсивное испарение воды — тайфуны и ураганы черпают свою энергию с сильно нагретой поверхности океана. На процесс испарения затрачивается значительное количество тепла, которое затем отдается воздуху при конденсации поднимающегося вверх водяного пара в виде скрытой теплоты конденсации. Ветер и волны, поднятые тропическим циклоном, усиливают эффект охлаждения поверхностных вод, перемешивая более глубокие и холодные воды с поверхностными. По данным русских океанологов, наблюдавших тайфун Элла в Тихом океане, в полосе шириной несколько больше 100 км температура воды понизилась на 2°C, а пообе стороны от этой полосы — повысилась в среднем на 3°C.

Список литературы

- 1. Богданов Ю.А., Каплин П.А., Николаев С.Д. Происхождение и развитие океана. М., 1978 2. Наша Планета; Москва; 1985.
 - 3. А.Горбовский; Загадки Древнейшей истории; Москва; 1971.
 - 4. Страны и народы; Москва; 1985.
 - 5. Пьер Агесс; Ключи к экологии; Ленинград; 1982
 - 6. Р.Кэррингтон; Биология моря; Ленинград; 1966
 - 7. В.З. Черняк; Семь чудес и другие; Москва; 1983.
 - 8. Френц Щебек; Вариации на тему одной планеты; 1972.
 - 9. А.Г.Томилин; В мире китов и дельфинов; Москва; 1976.
 - 10. Фолько Куиличи; Океан; Москва; 1976.
 - 11. Жорж Блон; Великий час океанов Атлантический; Москва; 1978
 - 12. Жорж Блон; Великий час океанов Средиземное море; Москва;1978.
 - 13. Тур Хейердал; Путешествие на « Кон Тики «; Алма Ата; 1960
 - 14. Жак Ив Кусто и Филипп Доле; Могучий властелин морей; Москва; 1982
 - 15. В.Н.Степанов; Природа Мирового океана; Москва; 1982.