

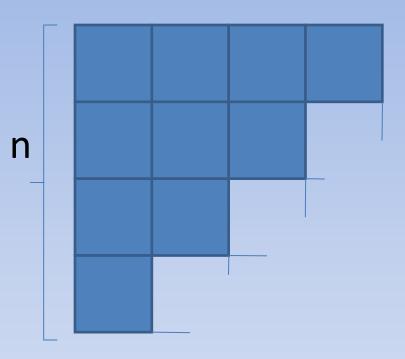
Свойства магического квадрата и других фигур

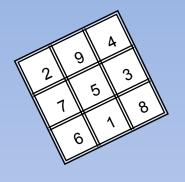
Выполнила: Маляренко Н.Д. Учитель математики МОУ «СОШ № 51» г. Магнитогорска

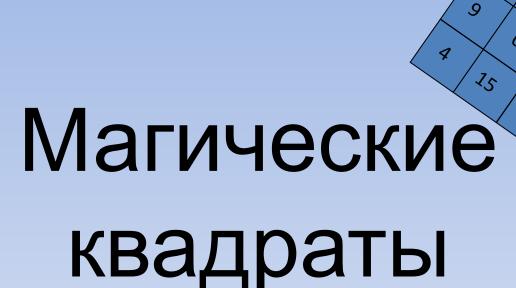
Введение

Понятие магического квадрата

Магическим «n² квадратом» назовём квадрат, разделённый на n^2 - клеток, заполненный первыми п натуральными числами так, что суммы чисел, стоящих в любом горизонтальном или вертикальном ряду, а также на любой из диагоналей квадрата, равны одному и тому же $\mathsf{YNC}n(n^2+1)$ $S_n =$





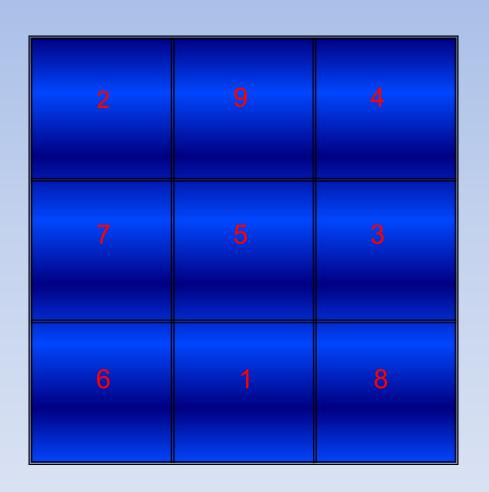


ZZ

73

1	15	24	8	17
9	18	2	11	2 5
12	21	10	19	3
20	4	13	22	6
23	7	16	5	14

Квадрат третьего порядка



Квадрат третьего порядка существует лишь один, если не считать квадратов созданных путем перестановок данного.

Сумма чисел, стоящих в любой строке, в любом столбце и на каждой из главных диагоналей равна 15

Квадрат четвертого порядка

16	33	2	13
5	10	11	8
9	6	7	12
4	15	14	1

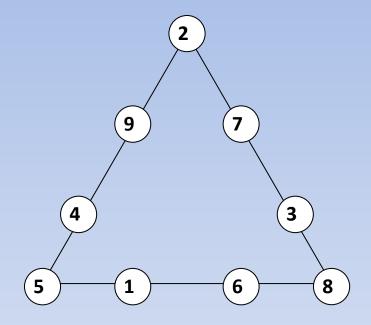
• Если не считать различными квадраты, которые можно получить поворотами и отражениями друг в друга, то различных магических квадратов будет 880

Другие магические фигуры

магические треугольники

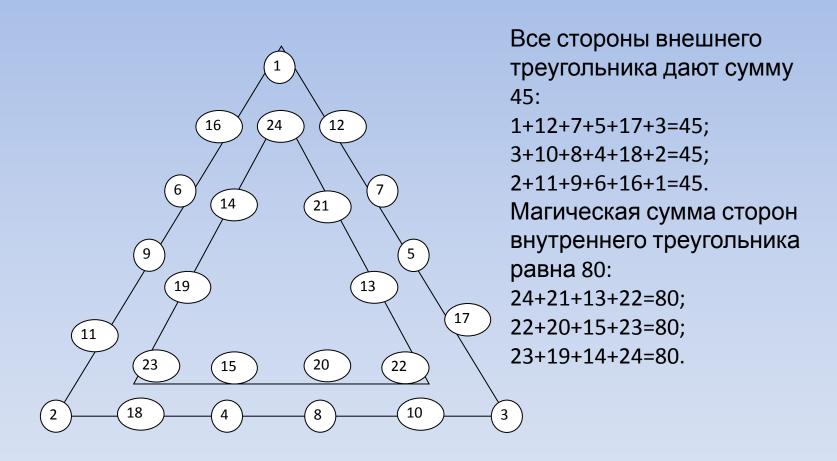
• Треугольники с магическим периметром:

Натуральные числа от 1 до 9 следует вписать таким образом, сумма квадратов чисел, расположенных вдоль каждой стороны треугольника, была всегда одна и та же

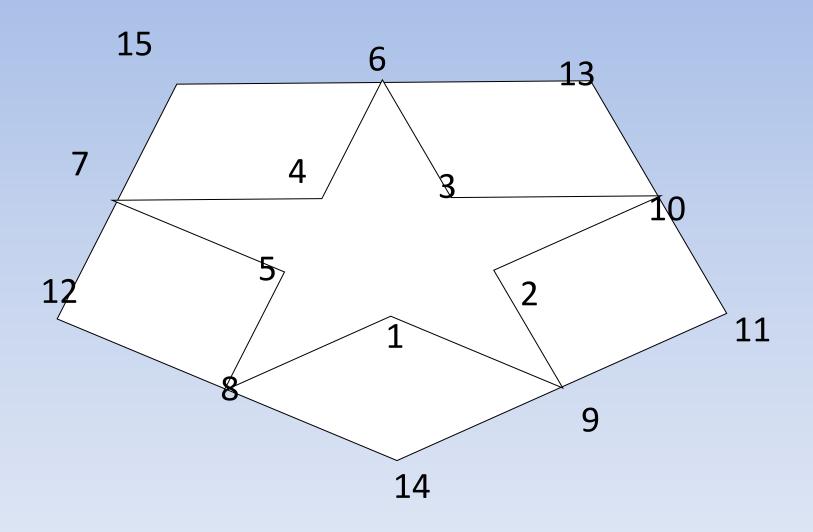


25+16+81+4=126 4+49+9+64=126 25+1+36+64=126

Концентрические треугольники



Магические звезды

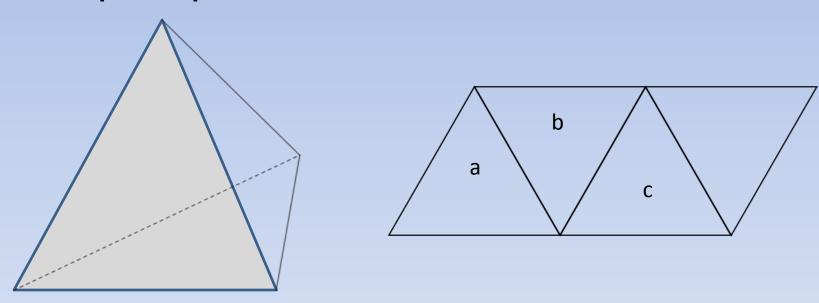


Исследовательская работа

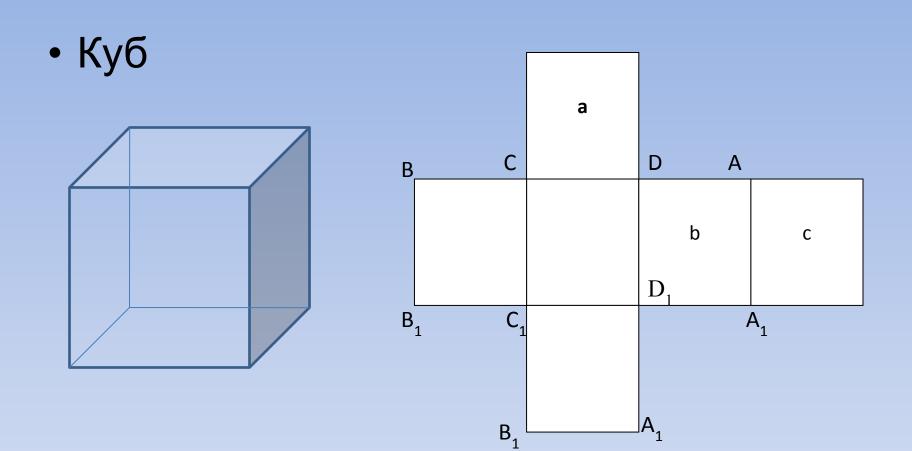
- Целью данной работы является определение "магических" объемных фигур - "магических" многогранников. "Магическим" назовем многогранник, у которого числа, расположенные на гранях, имеющие общую вершину, составляют "постоянную" сумму, причем числа не повторяются.
- Для достижения данной цели поставим следующие задачи:
 - Найти "магические" многогранники среди правильных объемных фигур - тетраэдра, куба, октаэдра, додекаэдра, икосаэдра;
 - Найти "магические" многогранники среди произвольных объемных фигур.

Решение задач исследования

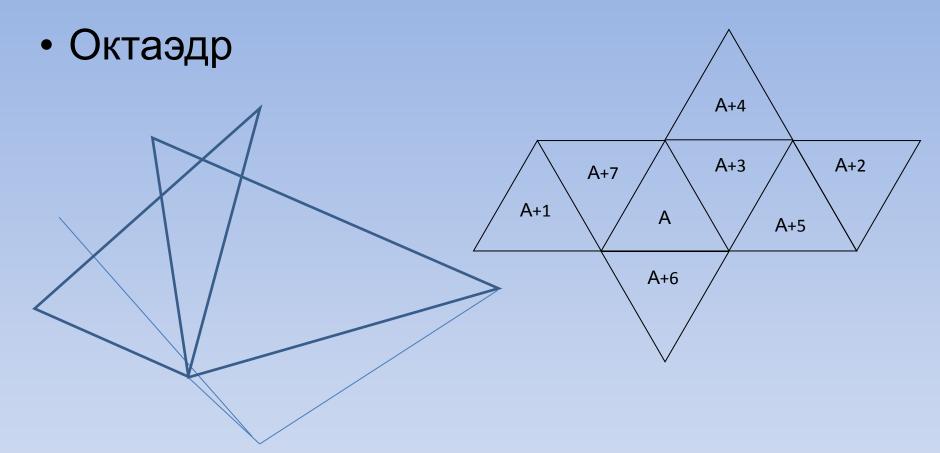
• Тетраэдр



Тетраэдр имеет четыре грани и четыре вершины, значит требуется расставить четыре числа. Поместим числа *a, b, c* на гранях, имеющие общую вершину *C,* их сумма *S* при данной вершине равна *a + b+ c,* т. е. такая же сумма должна быть и при вершине *B. Для выполнения* этого условия необходимо, чтобы на оставшейся четвертой грани находилось число *c.* Это противоречит определению "магического" многогранника, следовательно, тетраэдр не может являться этой фигурой.



Рассмотрим куб. Он имеет восемь вершин и шесть граней. Поместим числа a, b, c на гранях, имеющие общую вершину A, их сумма S при данной вершине равна a+b+c, т. е. такая же сумма должна быть и при вершине D. Для выполнения этого условия необходимо, чтобы на грани $\mathrm{CDD}_1\mathrm{C}_1$ находилось число c. Это противоречит определению "магического" многогранника, следовательно, куб не может являться этой фигурой.



Перейдем теперь к октаэдру . Он имеет восемь граней и шесть вершин. Будем расставлять восемь последовательных чисел: a, a + 1, a + 2, a + 3, a + 4, a + 5, a + 6, a + 7. Найдем сумму при вершине: S=(a+a+1+a+2+a+3+a+4+a+5+a+6+a+7)/2=4a+14. Так как у октаэдра шесть вершин, то требуется представить эту сумму данными числами шестью разными вариантами. Получаем:

```
4a + 14 = a + a + 3 + a + 4 + a + 7;

4a + 14 = a + a + 3 + a + 5 + a + 6;

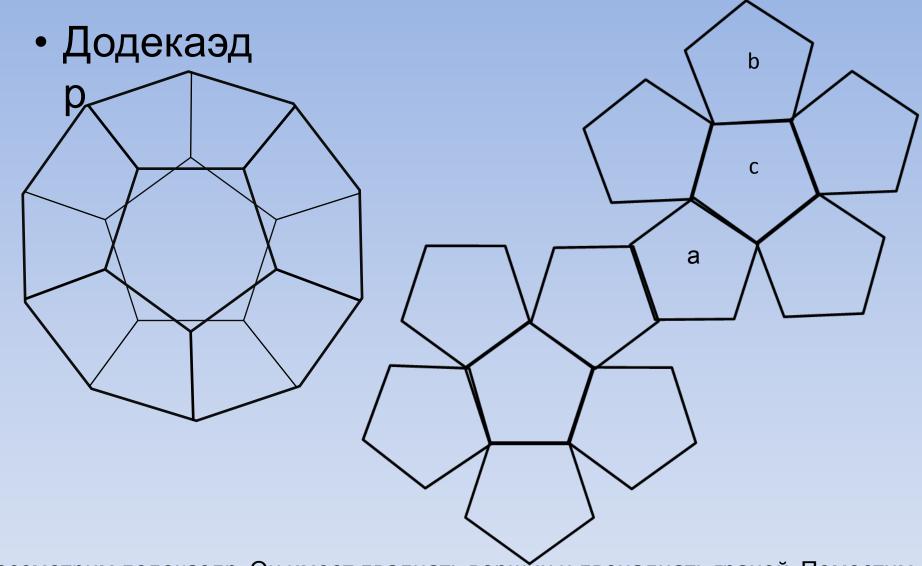
4a + 14 = a + 1 + a + 2 + a + 5 + a + 6;

4a + 14 = a + 1 + a + 2 + a + 4 + a + 7;

4a + 14 = a + a + 1 + a + 6 + a + 7;

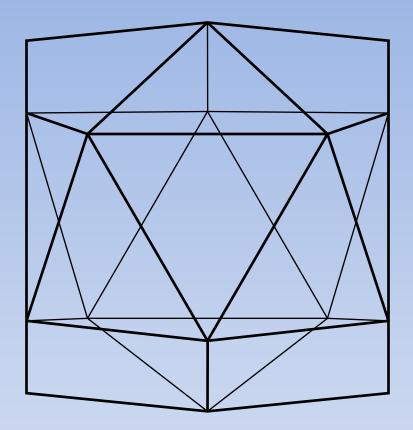
4a + 14 = a + 2 + a + 3 + a + 4 + a + 5;
```

Следовательно, сумма при любой из шести вершин будет равна одному и тому же числу. Значит, октаэдр является "магической" фигурой.



Рассмотрим додекаэдр. Он имеет двадцать вершин и двенадцать граней. Поместим числа *a, b,* с на гранях, имеющие общую вершину, их сумма S при данной вершине равна *a* + *b* + c, т. е. такая же сумма должна быть и при другой вершине. Для выполнения этого условия необходимо, чтобы на грани находилось число с. Это противоречит определению "магического" многогранника, следовательно,

• Икосаэдр



Перейдем к рассмотрению икосаэдра. Он имеет двадцать граней и двенадцать вершин. Будем расставлять двадцать последовательных чисел: a,a+1,a+2...a+19. Найдем сумму при вершине: S=(a+a+1+a+2+...+a+19)/4=(20a+190)/4=5a+47,5. Но сумма должна быть целым числом.

Поиск других "магических" многогранников

Разделим каждую грань куба на 16 равных квадратиков и поместим в них числа от 1 до 96 таким образом, что с любой стороны любой ряд чисел, - слева направо, сверху вниз, по большим диагоналям, в сумме дает 194. Учтем, что не одно число не будет повторяться в этих квадратиках.

				87	12	86	9				
			82	13	83	16					
				11	88	10	85				
				14	81	15	84				
63	36	62	33	79	20	78	17	95	4	94	1
58	37	59	40	74	24	75	24	90	5	91	8
35	64	34	61	19	80	18	77	3	96	2	93
38	57	39	60	22	73	23	76	6	89	7	92
				71	28	70	25				
			66	29	67	32					
			27	72	26	69					
			30	65	31	68					
				55	44	54	41				
			50	45	51	48					
			43	56	42	53					
				46	49	47	52				

Заключение

В ходе выполненной работы по поиску "магических" многогранников были рассмотрены все правильные многогранники. Установлено, что среди них "магическим" является только октаэдр. Также в работе присутствует "магический" квадрат и куб обладающие интересным свойством.