
Платоновы и Архимедовы тела

Выполнили:

Заковранова Элеонора,

Ткачук Екатерина

Руководитель:

Еремина Людмила

«Предмет математики настолько серьезен, что полезно не упускать случая сделать его немного занимательным»

Блез Паскаль

Содержание:

- Основные понятия
- **Платоновы тела**
- 📤 Архимедовы тела
- Список используемой литературы

Основные понятия:

Многогранник – это геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями.

Ребра – стороны граней многогранника, а концы ребер – вершины многогранника.

Многогранник называется выпуклым, если он весь расположен

Платон

428 — 347 гг. до н. э.

<u>Правильные</u> <u>многогранники</u> изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже приписывали магические свойства. Древнегреческий ученый и философ Платон (IV - V)в до

считал, что эти

3 своем диалоге «Тимей» Платон говорит, что атом огня имеет вид тетраэдра, земли – гексаэдра *(*куба),



воздуха – октаэдра, воды – икосаэдра.

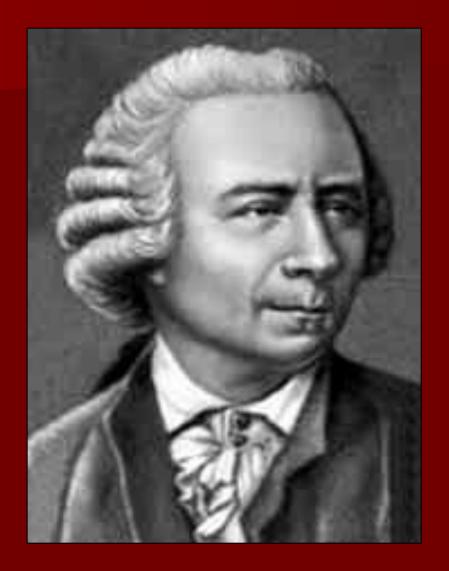
В этом соответствии не нашлось места только додекаэдру и Платон предположил существование еще одной, пятой сущности – эфира, атомы которого как раз и имеют форму додекаэдра.

и Платона продолжили перечисленных то поэтому эти многогранники называют платоновыми

Что такое правильный многогранник?

правильным, если все грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер и все двугранные углы

Все правильные многогранники имеют разное число граней и названия получили по этому числу. Существует всего пять видов правильных многогранников:


- Тетраэдр
- Гексаэдр
- Октаэдр
- Додекаэдр
- Икосаэдр

Формула Эйлера.

Подсчитаем число вершин (В), граней (Г) и ребер (Р) в платоновых телах.

Многогран ник	Вершин ы	Грани	Рёбра	В+Г-Р
Тетраэдр	4	4	6	2
Гексаэдр	8	6	12	2
Октаэдр	6	8	12	2
Додекаэдр	20	12	30	2
Икосаэдр	12	20	30	2

Леонард Эйлер

4(15).4.1707 - 7(18).9.1783

Симметрия многогранников

Многогранник	Оси симметрии	Плоскости симметрии
Тетраэдр	3	6
Куб	9	9
Октаэдр	9	7
Додекаэдр	15	15
Икосаэдр	15	15

Некоторые вычислительные формулы

правильных многогранников

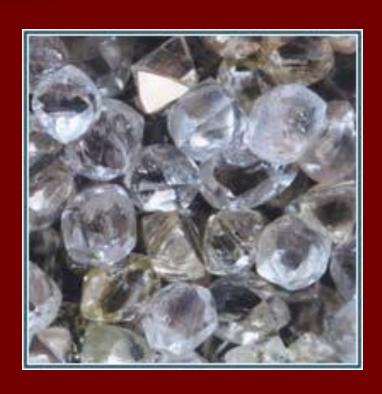
Многогран- ник	Радиус описанно	Радиус вписанно	Объём
	й сферы	й сферы	
Тетраэдр	$\frac{a\sqrt{6}}{4}$	$\frac{a\sqrt{6}}{12}$	$\frac{a^3\sqrt{2}}{12}$
Куб	$\frac{a\sqrt{3}}{2}$	$\frac{a}{2}$	a^3
Октаэдр	$a\sqrt{2}$	$\frac{a\sqrt{6}}{6}$	$\frac{a^3\sqrt{2}}{3}$
Додекаэдр	$\frac{a}{4}\sqrt{18+6\sqrt{5}}$	$\frac{a}{2}\sqrt{\frac{25+11\sqrt{5}}{10}}$	$\frac{a^3}{4}(15+7\sqrt{5})$
Икосаэдр	$\frac{a}{4}\sqrt{10+2\sqrt{5}}$	$\frac{a}{12}(3+\sqrt{5})\sqrt{3}$	$\frac{5}{12}a^3(3+\sqrt{5})$

Свойства

- Внутри каждого правильного многогранника су-ществует точка, которая служит центром трех сфер: описанной сферы (проходящей через все вершины многогранника); вписанной сферы (касающейся всех его граней); полувписанной сфе-ры (касающаяся всех его ребер).
- Для каждого правильного многогранника сущест-вует взаимный двойственный по отношению к данному многогранник.
- Центры граней правильного

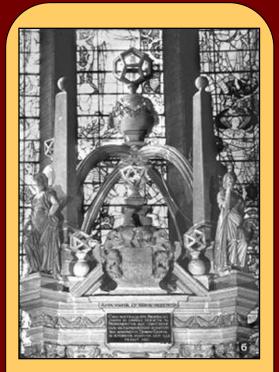
"Тайная вечеря "С. Дали

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников.

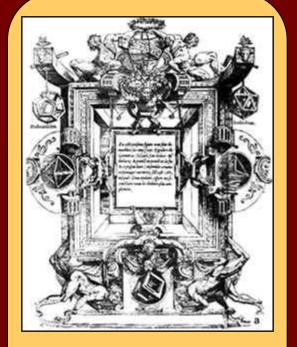

Леонардо да Винчи (1452 — 1519) увлекался теорией многогранников и часто изображал их на своих полотнах.

Сальвадор Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

Сальвадор Дали «Тайная вечеря»


Кристаллы

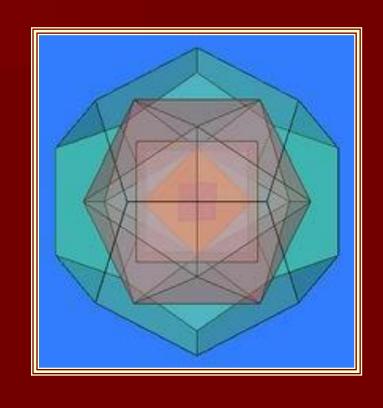
Кристаллы — тела, имеющие многогранную форму. Вотодин из примеров таких тел: кристалл пирита (сернистый колчедан FeS) — природная модель додекаэдра.


ПИРИТ (от греч. "пир" — огонь) — сернистое железо или серный колчедан. Размеры крис-таллов пирита часто достигают нескольких сантиметров и яв-ляются хорошим коллекционным материалом.

Впрочем, многогранники - отнюдь не только объект научных исследований. Их формы — завершенные и при-чудливые, широко используются в декоративном искусстве.

Надгробный памятник в кафедральном соборе Солсбери

Ярчайшим примером худо-жественного изображения многогранников в *XX* веке являются графические фантазии Маурица Эшера



Титульный лист книги Ж. Кузена «Книга о перспективе»

Мауриц Эшер в своих рисунках как бы открыл и интуитивно проиллюстрировал законы сочетания элементов симметрии, т.е. те законы, которые властвуют над кристаллами, определяя и их внешнюю форму, и их атомную структуру, и их физические свойства.

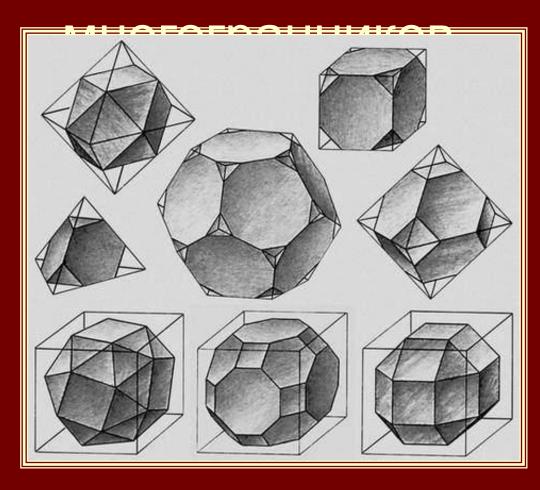
Архимедовы тела

Кроме правильных мно-гогранников существует 13 полуправильных мно-гогранников, которые носят свое название «тел Архимеда», поскольку он первым их описал.

Это тела, составленные из многоугольников двух видов, причем в каждой вершине сходится одно и то же число многоугольников каждого вида. Примером такого многогранника

Архимед

287 - 212 гг. до н.


Э.

Полуправильный многогранник – это...

выпуклый многогранник, обладающий двумя свойствами:

- все его грани являются правильными многоугольниками двух или более типов (если все грани правильные много-угольники одного типа, это правильный многогранник);
- все многогранные углы при вершинах конгруэнтны.

многогранники получаются в процессе усечения вершин правильных

Существует 13 видов Архимедовых тел:

- ■Усеченный тетраэдр ■Усеченный
- ■Усеченный куб додекаэдр
- Ромбокубооктаэдр

-Усеченный октазло

- ■Плосконосый додекаэдр
- ■Усеченный кубооктаэдр
- ■Кубооктаэдр

- ■Ромбоикосододекаэдр
- ■Усеченный икосододекаэдр
- Икосододекаэдр
- Усеченный икосаэдр

Усеченный тетраэдр

Усеченный тетраэдр – это полуправильный многогранник, составленный из 4 треугольников и 4 шестиугольников. Имеет 12 вершин и 18 ребер.

Усеченный куб – это полуправильный многогранник, составленный из 8 треугольников

II (OOOL MUNOOFI IIIII OO

Ромбокубооктаэдр

Ромбокубооктаэдр – это полуправильный многогранник, составленный из 8 треугольников и 18 квадратов. Имеет 24

верщиносконосый додекаэдр

Плосконосый додекаэдр – это полуправильный многогранник, составленный из 80 треугольников и 12 пятиугольников. Имеет 60

Усеченный кубооктаэдр

Усеченный кубооктаэдр – это полу-правильный многогранник, составлен-ный из 12 квадратов, 8 шести-угольников и 6

Кубронтизодрников. Имеет 48

Вериши 72 робра. Кубооктаэдр – это полуправильный многогранник,

составленный из 8

составленный из δ

треугольников

и 6 квадратов. Имеет 12

вершин и 24 ребра

Усеченный октаэдр

Усеченный октаэдр – это полуправильный многогранник, составленный их *6* квадратов и *8*

шестиугольников. Имеет 24 вершины и 36 ребер.

Усеченный додекаэдр – это полуправильный многогранник, составленный из 20 треугольников 12 десятиугольников. Имеет

(0 papililati 14 00pa6ap

Ромбоикосододекаэдр

Ромбоикосододекаэдр – это полуправильный многогранник, составленный из 20 треугольников, 30 квадратов и 12

пятиугольников. Имеет 60 Усеченный икосододекаэдр вершин и 120 ребер.

Усеченный икосододекаэдр – это полуправильный многогранник, состав-ленный из 30 квадратов, 20 шести-угольников и 12 десятиугольников. Имеет 120

Икосододекаэдр

Икосододекаэдр – это полуправильный многогранник, составленный из 20 треугольников и 12

Усеченный и коребер.

вершин и 60 ребер.

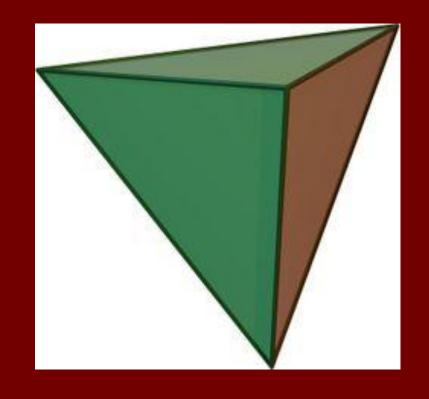
Усеченный икосаэдр – это полуправильный многогранник, составленный из 12 пятиугольников и 20шестиугольников. Имеет 60

DODLINALIA DODOGOD

Плосконосый куб

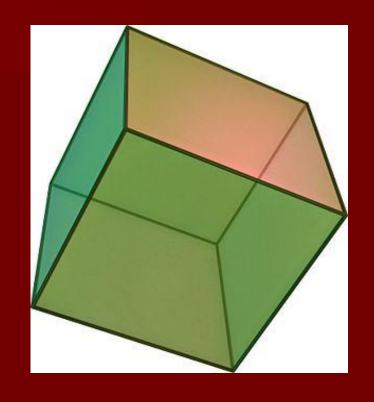
Плосконосый куб – это полуправильный многогранник, составленный из 32 треугольников и 6 квадратов. **Имеет** 24

В основу формирования пространственной конструк-ции положена геометрия Платона и Архимеда, позво-ляющая создавать практичес-ки


любые композиционные решения из правильных и полуправильных многогранников.

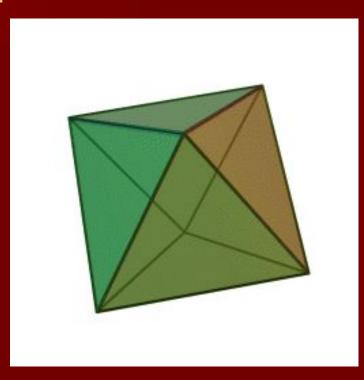
!!! КОНЕЦ!!!

Тетраэдр


Tempaэдp — многогранник с четырьмя треугольными гранями, в каждой вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

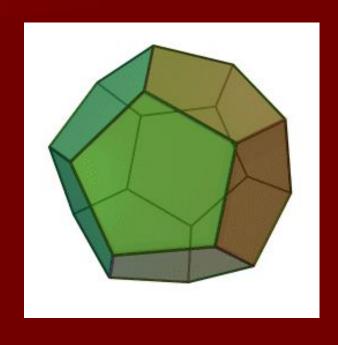
Гексаэдр

Гексаэдр (куб, hexa—шесть) — правильный многогранник, все грани которого — квадраты, и из каждой вершины выходит три ребра.


виды правильных многогранников.

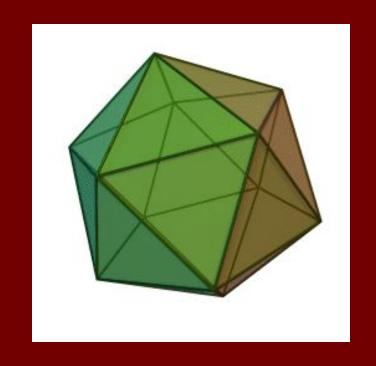
Иоганн Кеплер называл куб "родителем" всех правильных многогранников. На основе куба он смог построить все другие

Октаэдр


Октаздр (греч. οκτάεδρον, от греч. окт $\acute{\omega}$, «восемь» и греч. έδρα - «основание») один из пяти правильных многогранников, имеющий 8 граней (треугольных), 12 рёбер, 6 вершин (в каждой вершине сходятся 4 ребра).

Додекаэдр

Додекаэдр (от греч. dodeka двенадцать и *hedra* — грань) правильный многогранник, имеющий 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.



Сумма плоских углов при каждой из 20 вершин равна 324°.

Икосаэдр

Икосаэдр (от греч. εικοσάς, «двадцать» и греч. - εδρον, «грань») — правильный многогранник, двадцатигранник. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12.

