Касательная к графику функции

Подготовила: ученица 11 класса «Д» Красовская Виктория Руководители: Крагель Т.П., Гремяченская Т.В

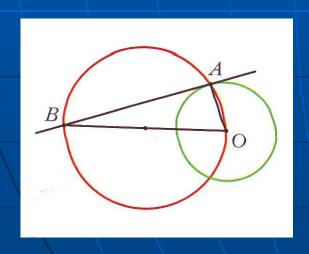
г. Старый Оскол 2006

Содержание:

- Появление понятия касательной
- История появления касательной
- Построение касательной
- Пример построения касательной:
 - <u>1 часть</u>
 - 2 часть
 - 3 часть

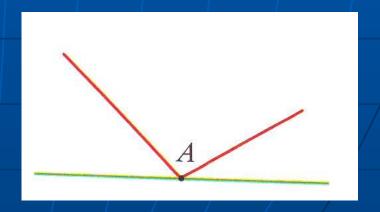
Появление понятия касательной

Понятие касательной – одно из древнейших в математике. В геометрии касательную к окружности определяют как прямую, имеющую ровно одну точку пересечения с этой окружностью. Древние с помощью циркуля и линейки умели проводить касательные к окружности, а в последствии – к коническим сечениям: эллипсам, гиперболам и параболам.



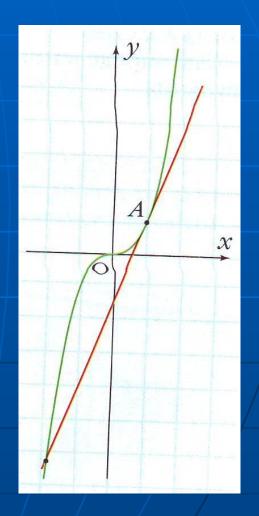
История появления касательной

Интерес к касательным возродился в Новое время. Тогда были открыты кривые, которых не знали учёные древности. Например, Галилей ввёл циклоиду, а Декарт и Ферма построили к ней касательную. В первой трети XVII в. Начали понимать, что касательная – прямая, «наиболее тесно примыкающая» к кривой в малой окрестности заданной точки. Легко представить себе такую ситуацию, когда нельзя построить касательную к кривой в данной точке (рисунок).



Построение касательной

Построение касательных – одна из тех задач, которые привели к рождению дифференциального исчисления. Первый опубликованный труд, относящийся к дифференциальному исчислению и принадлежащий перу Лейбница, имел название «Новый метод максимумов и минимумов, а также касательных, для которого не служат препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления».

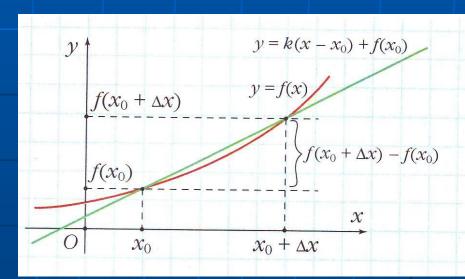


Пример построения касательной

Пусть кривая есть график функции f(x) изображённый на рисунке, и требуется провести касательную к этой кривой в точке χ . Поступим следующим образом. Возьмём точку $\chi = \chi_0 + \Delta \chi$, близкую к χ_0 , и проведём через точки (χ_0 ; $f(\chi_0)$) и (χ_0 + $\Delta \chi$; $f(\chi_0$ + $\Delta \chi$) прямую (секущую, как иногда говорят). Уравнение секущей, как нетрудно проверить имеет вид

$$y = k(x - x_0) + f(x_0),$$

где
$$\kappa = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$



<u>√ вернуться к содержанию</u>

Если существует предел

$$\lim_{\Delta x \to 0} k = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

то прямую

$$\lim_{\Delta x \to 0} k = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

и называют *касательной к графику функции* f(x) *в точке* x_0 . Если сказать иначе, касательную можно определить как прямую, которая является предельным положением секущих, когда Δx стремится к 0.

Из определения величины k_0 видно, что функция

$$\alpha(\Delta x) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - k_0$$

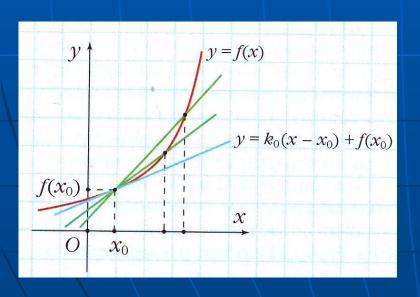
Стремится к 0, когда Δx стремится к 0. Последнее равенство означает, что

$$f(x_0 + \Delta x) = f(x_0) + k_0 \Delta x + \alpha (\Delta x) \Delta x$$

√ вернуться к содержанию

T.e.
$$f(x) - T(x) = \alpha(\Delta x) \Delta x$$

где $\chi = \chi_0 + \Delta \chi$. Другими словами, чем ближе χ к χ_0 (т.е. чем меньше $\Delta \chi$), тем сильнее секущая «прижимается» к графику функции в том смысле, что разность $f(\chi)$ - $T(\chi)$ стремится к нулю ещё быстрее, чем $\Delta \chi$. Среди всех прямых, проходящих через точку $(\chi_0; f(\chi_0))$, этим свойством обладает лишь касательная.



√ вернуться к содержанию