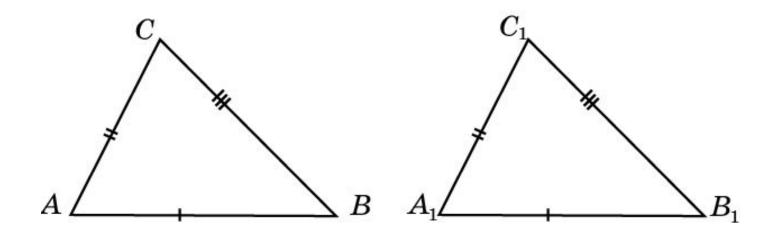
Третий признак равенства треугольников

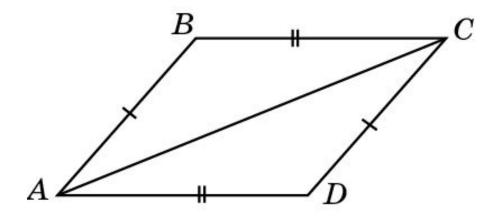
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.



В треугольниках ABC и MNK справедливы неравенства $AB \neq MN$, $BC \neq NK$, $CA \neq KM$, а треугольники все же равны. Возможно ли это?

Ответ: Да.

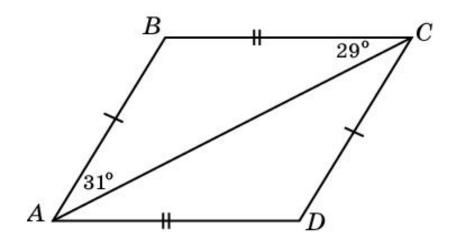
На рисунке AB=DC и BC=AD. Докажите, что угол B равен углу D.



Доказательство: Проведем отрезок AC. Треугольники ABC и CAD равны по третьему признаку. Следовательно, угол B равен углу D.

Упражнение 2'

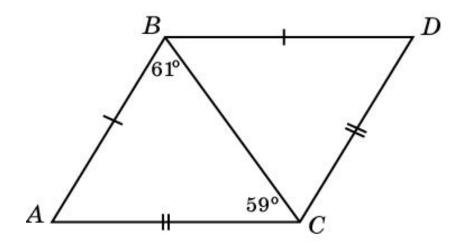
На рисунке AB=DC и BC=AD. ∠ $BAC=31^{\circ}$, ∠ $BCA=29^{\circ}$. Найдите угол ACD.



Решение: Треугольники ABC и CAD равны по третьему признаку. Следовательно, $\angle ACD = \angle BAC = 31^{\circ}$.

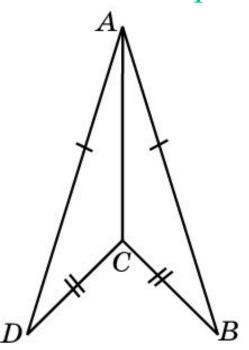
Упражнение 2"

На рисунке AB=BD и AC=CD. ∠ $ABC=61^{\circ}$, ∠ $ACB=59^{\circ}$. Найдите угол BCD.



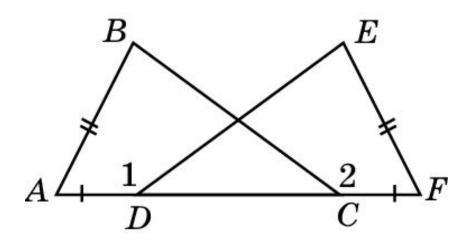
Решение: Треугольники ABC и DBC равны по третьему признаку. Следовательно, $\angle BCD = \angle ACB = 59^{\circ}$.

На рисунке AB = AD и DC = BC. Докажите, что отрезок AC является биссектрисой угла BAD.



Доказательство: Треугольники ABC и ADC равны по третьему признаку. Следовательно, угол BAC равен углу DAC, т.е. AC — биссектриса угла BAD.

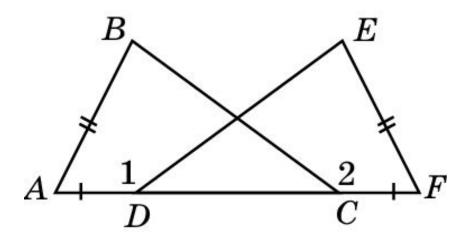
На рисунке AD = CF, AB = FE, BC = ED. Докажите, что $\angle 1 = \angle 2$.



Доказательство: Треугольники ABC и FED равны по третьему признаку. Следовательно, угол ACB равен углу FDE и, значит, $\triangle 1 = \triangle 2$.

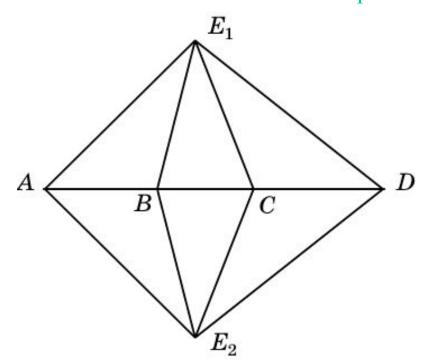
Упражнение 4'

На рисунке AD = CF, AB = FE, BC = ED. ∠1 = 140°. Найдите ∠ 2.



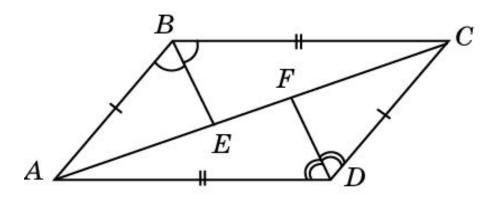
Решение: Треугольники ABC и FED равны по третьему признаку. Следовательно, $\angle 2 = \angle 1 = 140^{\circ}$.

Точки A, B, C, D принадлежат одной прямой. Докажите, что если треугольники ABE_1 и ABE_2 равны, то треугольники CDE_1 и CDE_2 тоже равны.



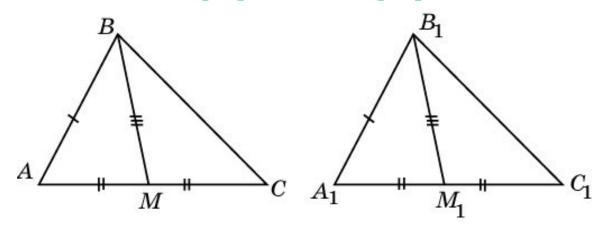
Доказательство: Из равенства треугольников ABE_1 и ABE_2 следует равенство сторон $\bar{B}E_{\scriptscriptstyle 1}$, BE_2 и углов CBE_1 , CBE_2 . Отсюда (по первому признаку) вытекает равенство треугольников BCE_1 и BCE_{2} . Аналогичным образом, из равенства треугольников BCE_1 и BCE_2 вытекает равенство треугольников CDE_1 и CDE_2 .

На рисунке AB = CD, AD = BC, BE - биссектриса угла ABC, а DF - биссектриса угла ADC. Докажите, что $\Delta ABE = \Delta CDF$.



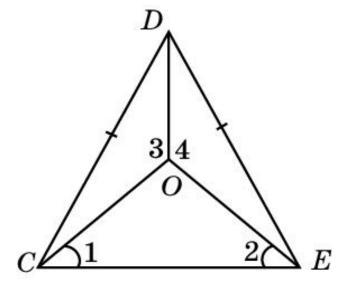
Доказательство: Треугольники ABC и CDA равны по третьему признаку равенства треугольников (AB = CD, BC = DA, AC -общая. Следовательно, равны углы BAC и ACD, ABC и CDA. Из равенства последних углов следует равенство углов ABE и CDF. Треугольники ABE и CDF будут равны по второму признаку равенства треугольников (AB = CD, $\angle BAE = \angle DCF$, $\angle ABE = \angle CDF$).

Докажите, что треугольники ABC и $A_1B_1C_1$ равны, если у них равны медианы BM и B_1M_1 , стороны AB и A_1B_1 , AC и A_1C_1 .



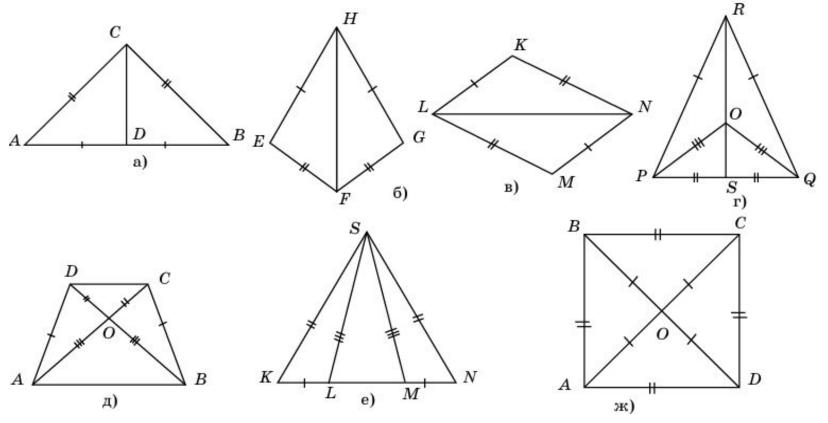
Доказательство: Треугольники ABM и $A_1B_1M_1$ равны по третьему признаку равенства треугольников. Следовательно, равны углы BAC и $B_1A_1C_1$. Треугольники ABC и $A_1B_1C_1$ будут равны по первому признаку равенства треугольников.

На рисунке CD = ED, $\angle 1 = \angle 2$. Докажите, что $\angle 3 = \angle 4$.



Доказательство: Треугольник OCE равнобедренный (OC = OE). Треугольники OCD и OED равны по третьему признаку равенства треугольников. Следовательно, равны углы 3 и 4.

На рисунках отмечены равные отрезки и равные углы. Укажите на них равные треугольники.



Otbet: a) ADC и BDC; б) EFH и GFH; в) KLN и MNL; г) POR и QOR, POS и QOS, PRS и QRS; д) AOD и BOC, ABD и BAC, ACD и BDC; е) KLS и NMS, KMS и NLS; ж) AOB и BOC и COD и AOD, ABD и BCD и ADC и DAB.