Азот

Содержание

- Краткая характеристика
- Физические свойства
- Химические свойства
- Применение
- История открытия
- Нахождение в природе
- Получение
- Интересные факты

Краткая характеристика

■ A3OT (лат. Nitrogenium — рождающий селитры), N (читается «эн»), химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде — газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N₂, обладающих высокой прочностью. Относится к неметаллам.

7
5
14,006
2s² 2p³

Краткая характеристика

• **Название:** название от греческой *а* (отрицательная приставка) и *zoe* — жизнь (не поддерживает дыхания и горения).

Физические свойства

- Плотность газообразного азота при о°С 1,25046
 г/дм³, жидкого азота (при температуре кипения) 0,808 кг/дм³.
- Газообразный азот при нормальном давлении при температуре –195,8°С переходит в бесцветную жидкость, а при температуре –210,0°С — в белое

твердое вещество

Химические свойства

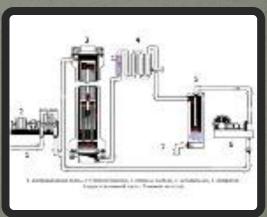
 Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием с образованием твердого нитрида лития Li₃N.

• В соединениях проявляет различные степени

окисления (от -3 до +5).

С водородом образует аммиак NH₃

Химические свойства

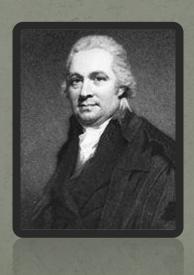

• Известно несколько оксидов азота. С галогенами азот непосредственно не реагирует, косвенными путями получены NF₃, NCl₃, NBr₃ и NI₃, а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF₃).

Химические свойства

- Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.
- При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М₃N₂, которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например Ca₃N₂ + 6H₂O = 3Ca(OH)₂ + 2NH₃

Применение

- промышленности газ азот используют главным образом для получения аммиака.
- Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей.



Применение

- Жидкий азот широко используют как хладагент, его применяют в медицине, особенно в косметологии.
- Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения.

История открытия

открыт в 1772 шотландским ученым Д.
 Резерфордом в составе продуктов сжигания угля,
 серы и фосфора как газ, непригодный для дыхания
 и горения («удушливый воздух») и в отличие от
 СО₂ не поглощаемый раствором щелочи.

История открытия

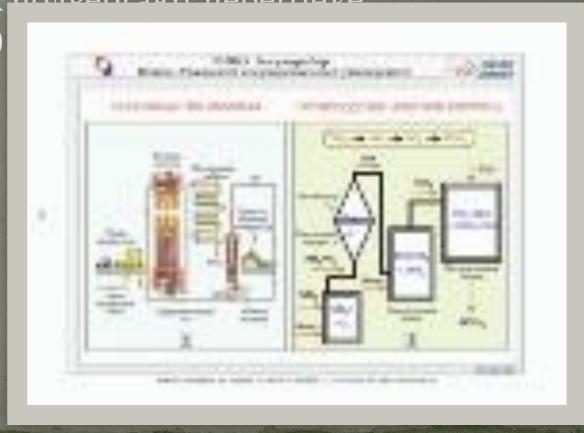
- Вскоре французский химик А. Л. Лавуазье пришел к выводу, что «удушливый» газ входит в состав атмосферного воздуха, и предложил для него название «azote» (от греч. azoos — безжизненный).
- В 1784 английский физик и химик Г. Кавендиш установил присутствие азота в селитре (отсюда латинское название азота, предложенное в 1790 французским химиком Ж. Шанталем).

Нахождение в природе

- в природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6% по массе азота), а в связанном виде в состав двух селитр: натриевой NaNO 3.
- По распространенности в земной коре азот занимает 17-е место, на его долю приходится о,0019% земной коры по массе.

Нахождение в природе

- Несмотря на свое название, азот присутствует во всех живых организмах (1-3% на сухую массу), являясь важнейшим
- Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ.


Нахождение в природе

- Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами.
- Превращения соединений азота в живых клетках
 важнейшая часть обмена веществ у всех организмов.

Получение

• : в промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух полрергают перегонуе

(дистилляции)

получение

- Температура кипения азота немного ниже (–195,8° С), чем другого компонента воздуха кислорода (–182,9°С), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым.
- Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот».
- Хранят жидкий азот в сосудах Дьюара.

получение

- В лаборатории чистый («химический») азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH₄Cl к твердому нитриту натрия NaNO₂:
- $NaNO_2 + NH_4Cl = NaCl + N_2 + 2H_2O$.
- Можно также нагревать твердый нитрит аммония:

ИНТЕРЕСНЫЕ ФАКТЫ!!!

Веселящий газ.

Бактерии связывают азот.

Растения разборчивы.

Веселящий газ

Из пяти окислов азота два — окись (NO) и двуокись (NO₂) — нашли широкое промышленное применение. Два других — азотистый ангидрид (N₂O₃) и азотный ангидрид (N₂O₅) — не часто встретишь и в лабораториях. Пятый — закись азота (N₂O). Она обладает весьма своеобразным физиологическим действием, за которое ее часто называют веселящим газом.

Бактерии связывают азот.

 Идею о том, что некоторые микроорганизмы могут связывать азот воздуха, первым высказал русский физик П. Коссович. Русскому биохимику С. Н. Виноградскому первому удалось выделить из почвы один вид бактерий.

Растения разборчивы.

 Дмитрий Николаевич Прянишников установил, что растение, если ему предоставлена возможность выбора, предпочитает аммиачный азот нитратному. (Нитраты — соли азотной кислоты.)