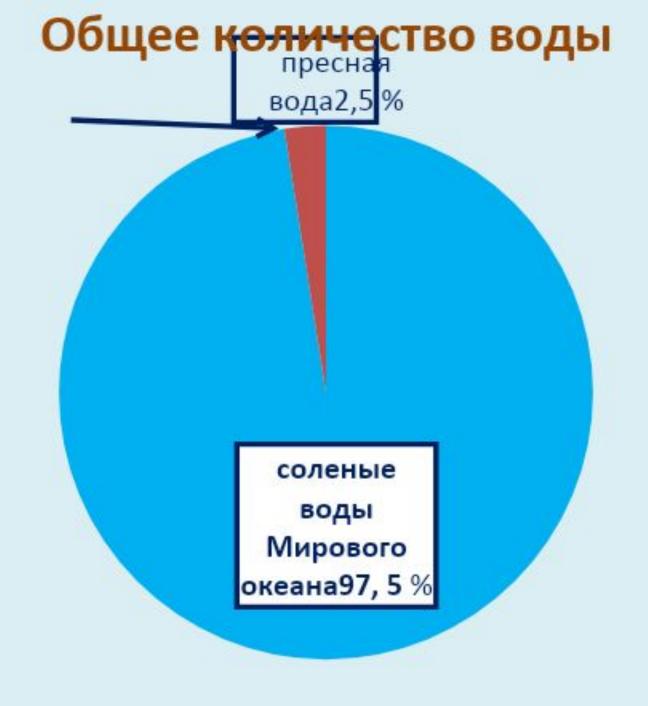
Кадетский корпус (инженерная школа) ВУНЦ ВВС «ВВА»

ЭКСПРЕСС-МЕТОД ОПРЕДЕЛЕНИЯ ОБЩЕГО СОЛЕСОДЕРЖАНИЯ ВОДЫ

Выполнил: воспитанник 10


класса

Поспелов Максим

Научный руководитель:

учитель химии

Куренкова Ольга Валерьевна

<u>Национальные стандарты на питьевую</u>

воду:

- Стандарт ВОЗ (Всемирной организации здравоохранения);
- Стандарт США;
- Стандарт стран Европейского союза (ЕС).

СанПиН 2.1.4.1074-01

(Питьевая вода. Гигиенические требования к качеству воды)

Питьевая вода должна быть:

- безопасной в эпидемиологическом и радиационном отношении;
- безвредной по химическому составу;
- иметь благоприятные органолептичептические свойства: вкус, цвет, запах.

ОСНОВНЫЕ КОМПОНЕНТЫ ПРИМЕСЕЙ ВОДЫ

Катионы:

Ca²⁺, Mg²⁺, Na⁺, K⁺, Fe³⁺

Анионы:

HCO₃⁻, SO₄²⁻, Cl⁻ CO₃²⁻, NO₃⁻

Требования к качеству питьевой воды

Показатели	Единица	Величина
	измерения	

СанПиН 2.1.4.10749 –01 «Питьевая вода. Гигиенические требования к качеству воды»

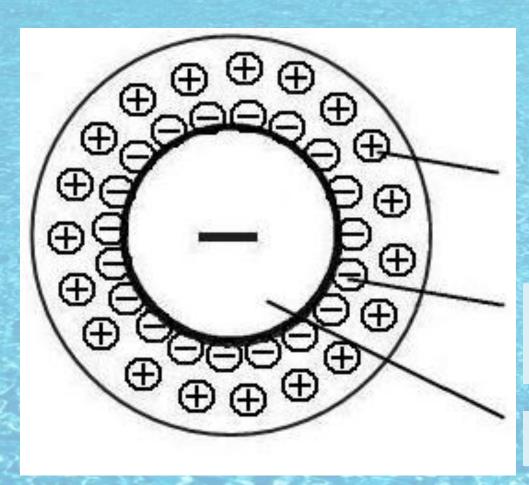
Минерализация	мг/л	<u>1000</u>
Жесткость общая	мг-экв/л	<u>7,0</u>
ООЩАЯ		

ЦЕЛЬ РАБОТЫ:

-определение общего солесодержания воды с применением процесса ионного обмена.

Основной принцип метода: количество катионов равно количеству анионов

Реакции определения концентрации гидрокарбонат ионов


$$Ca(HCO_3)_2 + 2HCl = CaCl_2 + 2H_2O + 2CO_2$$

 $Mg(HCO_3)_2 + 2HCl = CaCl_2 + 2H_2O + 2CO_2$

$$C_{HCO_3^-} = \frac{V_{HCI} \cdot C_{HCI}}{V_{H_2O}}$$
 , мг-экв/л

V_{HCI} – объем раствора HCI, пошедший на титрование, мл;

 ${f C}_{
m HCI}$ – концентрация раствора кислоты, мг-экв/мл; ${f V}_{
m H2O}$ – объем пробы воды, л

КАТИОНИТ

противоионы

функциональн ые группы полимерная матрица

СХЕМА ИОНООБМЕННОГО ПРОЦЕССА

$$\begin{array}{ccc}
& & |CaCI_2| \\
R-H + NaNO_3 & \longrightarrow & |Na + HNO_3| \\
& & |MgSO_4| & |Mg & H_2SO_4|
\end{array}$$

Титрован

ДО

Формула для расчета концентрации анионов сильных

 $C_1 = \frac{V_m \cdot C_m}{V_{npoobl}}$, мг-экв/л

- V_m объем раствора щелочи, пошедший на титрование, мл;
- C_{m} концентрация раствора NaOH, мг-экв/мл; $V_{mpoбы}$ объем титруемого фильтрата, л.

Общее солесодержание воды:

 $C_{\Sigma} = C_{2} + C_{3}$, мг-экв/л, C_{2} – концентрация гидрокарбонатионов, мг-экв/л; C_{3} – концентрация анионов сильных кислот, мг-экв/л.

 $C_{\text{Na}}^{+} + \kappa^{+} = C_{\Sigma}^{-} - C_{1}^{-}$, мг-экв/л: C_{1}^{-} общая жесткость, мг-экв/л.

Содержание ионов в воде (мг-

$N_{\underline{0}}$		Жест-	HCO ₃ -	Сильные	Na+ K	Общее солесо-
	пробы.	кость	3	кислоты		держание
	Районы	(C_3)	(C_2)	(C_1)	(C_4)	$ \mid \mathbf{C}_{\Sigma} = (\mathbf{C}_{2}) + (\mathbf{C}_{3}) \mid $
		<u> </u>				
1	Железнодор.	5,35	4,6	2,2	1,45	6,8 (526 мг/л)
2	Левобереж.	5,25	4,1	2,1	0,95	6,2 (473 мг/л)
3	Ленинский	5,3	4,1	1,8	0,6	5,9 (445 мг/л)
4	Коминтерн.	5,15	4,6	1,3	0,75	5,9 (457 мг/л)
5	Центральн.	4,85	3,9	1,8	0,85	5,7 (436 мг/л)
6	Источник	9,4	6,3	5,1	2,0	11,4 (856мг/л)
7	Чертовицк	1,05	1,1	0,3	0,35	1,4 (111 мг/л)
8	Водохранил.	5,9	4,9	2,0	1,0	6,9 (530 мг/л)

Выводы

Данным методом можно быстро оценить примерное содержание минеральных примесей:

- 1. в полевых условиях при поисковых работах для выбора источника водоснабжения населения;
- для определения солесодержания воды в кулерах и бутилированной воде с целью определения соответствия данных этикетки и реальной минерализации;
 - 3. в экологических целях для контроля состояния водоема и выявления факта сброса производственных сточных вод и др.

