Элементы V группы главной подгруппы

N, P, As, Sb, Bi.

 \dots n² p³

Валентность: V, III.

Ст. окисления: -3, +5, +3.

Азот – неМе, порядковый № 7, Ar = 14,

электронная формула 1s² 2s² 2p³.

Валентность: I, II, III, IV, V.

Ст. окисления: -3, +5, +3, +1, +2, +4.

Азот – простое вещество

N₂ – бесцветный газ без запаха и вкуса, легче воздуха, плохо растворяется в воде, входит в состав воздуха (78% по объему). N E N прочная молекула, хим. инертность.

Нахождение в природе. Входит в состав воздуха.

В виде нитратов содержится в почве. Является составной частью биологических вещ-в.

Химические свойства. В обычных условиях малоактивен. При высоких температурах становится реакционноспособным.

- 1. С кислородом.
- 2. С водородом.
- 3. C Me.

Aммиак NH₃.

В молекуле NH₃ три ковалентной связи. У азота осталась собственная пара электронов. Между молекулами аммиака возникает водородная связь (см. стр.112)

Физ. свойства. Бесцветный газ с резким запахом, в 2 раза легче воздуха, ядовит. Хорошо растворяется в воде (в 1 Уводы растворяется 720 V NH₃). Водный раствор аммиака – аммиачная вода, или нашатырный спирт.

 $NH_3 + H_2O \rightarrow NH_3 \cdot H_2O \quad (NH_4OH)$ Щелочной раствор аммиака, наличие гидроксильной группы (OH $^-$).

Химические свойства аммиака.

NH₃ активное вещество.

Взаимодействует:

С водой, с кислотами.

NH₃ + HCl → NH₄Cl

 NH_4^+ – ион (катион) аммония.

Донорно-акцепторный механизм.

Донор электронов N в аммиаке, а акцептором – катион водорода H⁺.

Аммиак сильный восстановитель, поэтому может окисляться.

$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$
 $4NH_3 + 5O_2$ катал. $\rightarrow 4NO + 6H_2O$

Получение аммиака.

1. В промышленности из азота и водорода.

$$N_2 + 3H_2 \leftrightarrow 2NH_3$$

2. В лаборатории.

Из солей аммония со щелочами при нагревании.

$$2NH_4CI + Ca(OH)_2 \rightarrow CaCI_2 + 2NH_3\uparrow + 2H_2O$$

Применение. См. стр. 115

Д/з: **§23, 24.** стр. 116 № 4,5.

Соли аммония.

При взаимодействии аммиака или гидроксида аммония с кислотами образуются соли аммония:

$$NH_3 + HNO_3 \rightarrow NH_4NO_3$$

 $NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$
 $NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + H_2O_4$

Все соли аммония хорошо растворимы в воде (см. табл. растворимости). Соли аммония подвергаются термическому разложению, согласно характера аниона, например:

$$(NH_4)_2SO_4 \rightarrow NH_3 + NH_4HSO_4$$

 $NH_4NO_3 \rightarrow N_2O\uparrow + H_2O$
 $NH_4CI \rightarrow NH_3 + HCI$

Реакция взаимодействия солей аммония со щелочью является качественной реакцией на катион аммония $NH_{_{A}}^{+}$:

$$NH_4CI + NaOH \rightarrow NaCI + NH_3\uparrow + H_2O$$

$$NH_4^+ + OH^- \rightarrow NH_3\uparrow + H_2O$$

Выделяющийся аммиак определяют по запаху или по посинению влажной лакмусовой бумажки.

Применение аммиака и солей аммония

Из аммиака получают азотную кислоту (HNO_3), гидроксид аммония (NH_4OH нашатырный спирт), соли аммония. Нашатырный спирт и нашатырь (NH_4CI) применяются в медицине. Нитрат и фосфат аммония используются в сельском хозяйстве в качестве удобрений.

Оксиды азота. Азотная кислота.

<u>Несолеобразующие</u> N₂O – оксид азота (I) NO – оксид азота (II)

<u>солеобразующие оксиды</u>:

N₂O₃ – оксид азота (III)

NO₂ – оксид азота (IV)

N₂O₄– димер оксид азота (IV)

N₂O₅ – оксид азота (V)

Оксид азота (I) N₂O – бесцв.газ со слабым запахом, сладков. вкусом, хорошо раствр. в воде, но реагирует с ней.

- Оксид азота (II) NO бесцв.газ, без запаха, малораствор., легко окисляется на воздухе до оксида азота (IV)
- Оксид азота (IV) NO₂ ядовитый газ бурого цвета, с запахом, хорошо растворим в воде.
- **Оксид азота (III) N₂O₃** темно-синяя жидкость, взаимодействует с водой, образует азотистую кислоту.
- **Оксид азота (V) N_2O_5 –** бесцв. кристаллы, хорошо растворяются в воде с образованием азотной кислоты.

Азотная кислота HNO₃

Физ.св-ва: HNO₃ – бесцв.жидкость, с резким запахом, легко испаряется. При попадании на кожу вызывает сильные ожоги, желтого цвета, 63%, с водой смешивается в любых соотношениях, разлагается на свету:

$$HNO_3 \rightarrow H_2O + NO_2\uparrow + O_2\uparrow$$

Хим. св-ва: HNO₃ – наиболее сильная кислота, полностью диссоциирует на ионы.

Реагирует: с основными оксидами, с основаниями, солями слабых кислот.

 HNO_3 – сильнейший окислитель.

С Ме никогда не выделяется Н₂. См.таблицу

Соли азотной кислоты - нитраты.

Нитраты K, Na, Ca, NH₄ называются **селитрами**. Они применяются как минеральные удобрения.

Все соли HNO₃ хорошо растворимы в воде.

При нагревании все нитраты разлагаются с выделением кислорода, другие продукты разложения зависят от положения Ме в ряду напряжения:

Д/З: § 26 Выучить формулы для хим. диктанта по азоту.