Сравнительная характеристика галогенов

Свойства химических элементов	фтор	хлор	бром	йод
Электронная формула				
Число электронов на внешнем уровне				
Число заполняемых энергетических уровней				
Изменение радиуса атомов в группе				
Окислительно- восстановительная способность, изменения в группе				
Характерные степени окисления				

Свойства химических элементов	фтор	хлор	бром	йод		
Электронная формула	1s ² 2s ² 2p ⁵	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁵	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 5s ² 5p ⁵		
Число электронов на внешнем уровне	7	7	7	7		
Число заполняемых энергетических уровней	2	3	4	5		
Изменение радиуса атомов в группе	Увеличивается сверху вниз					
Окислительно- восстановительная способность, изменения в группе	Уменьшается (сверху вниз				
Характерные степени окисления	-1	-1, +1, +3, +5, +7				

Название галогена, химическ ий знак	Химическ ая формула простого вещества	ная формула	Вид химическ ой связи	Тип кристалл ической решетки		Физические свойства		
					Агрегатн ое состояни е	Цвет	Раствори мость в воде	Нахожде ние в природе
фтор F								
хлор CI								
бром Br								
иод I								

ГАЛОГЕНЫ -VIIA

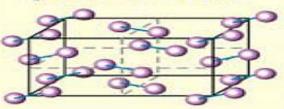
ФИЗИЧЕСКИЕ СВОЙСТВА

	Агрегатное состояние	P, r/cm³	t,, °C	t_, °C
		0,0017	-188	-220
CI,	8	0,0032	-34	-101
Br ₂	8	3,1	59	-7,5
		4,9	185	59

ГАЛОГЕНЫ В ПРИРОДЕ

Флюорит (плавиковый шпат) СаF₂

Каменная соль (галит) NaCl


Морская вода и бурые водоросли с солями брома

Миерсит Agi

Кристаллическая решетка иода

возгонка иода

Нахождение в природе

Из-за высокой химической активности галогены в природе в свободном виде не встречаются.

СаЕ, плавиковый шпат

Соединения галогенов

NaCI*KCI сильвинит

NaCI каменная соль

KIO₃, KIO₄ в залежах селитры, в морских растениях

Галогены Галогены (от греч. halos - соль и genes - образующий) - элементы главной подгруппы VIIгруппы периодической системы: фтор, хлор, бром, йод, астат.

- Фтор
- $F + 9)_2)_7 ... 2s^2 2p^5$
- Хлор
- $C(1+17)_{2}$...3s²3p³
- Бром
- Br +35)₂)₁₈)₇ ... $4s^24p^2$
- Йод
- 1+53) $_{2}$) $_{8518}$) $_{18}$) $_{7}$...5s²5p

- 1) Общая электронная конфигурация внешнего энергетического уровня nS²nP⁵.
- 2) С возрастанием порядкового номера элементов увеличиваются радиусы атомов, уменьшается электроотрицательность, ослабевают неметаллические свойства (увеличиваются металлические свойства); галогены сильные окислители, окислительная способность элементов уменьшается с увеличением атомной массы.
- 3) Сувеличением атомной массы окраска становится более темной, возрастают температуры плавления и кипения, а также плотность.

Физические свойства

С увеличением относительной молекулярной массы:

- усиливается интенсивность окраски;
- повышается Тпл и Ткип;
- •увеличивается плотность.

Все галогены обладают резким запахом.

ядовиты

ПОЛУЧЕНИЕ ГАЛОГЕНОВ

- 1. Электролиз растворов и расплавов галогенидов:
- $2NaCl + 2H_2O = Cl_2 + H_2 + 2NaOH$
- 2KF = 2K + \bar{F}_2 (единственный способ полученияя F_2)
- 2. Окисление галогенводородов:
- 2KMnO₄+16HCl=2KCl+2MnCl₂+5Cl₂+8H₂O Лабораторный способ получения хлора
- $14HBr+K_2Cr_2O_7=2KBr+2CrBr_3+3Br_2+7H_2O$
- MnO₂ + 4HHal = MnHal₂ + Hal₂ + 2 H₂O Лабораторный (Для получения хлора, брома, иода)
- 3. Промышленный способ окисление хлором (для брома и йода):
- 2KBr+Cl₂=2KCl+Br₂
- $2KI + Cl_2 = 2KCI + l_2$

Строение атомов галогенов

```
F+9 ) )
    2 7
Cl+17)))
        287
Br+35 ) ) )
     2 8 18 7
+53 ))))
     28 18 18 7
```

- Заряд ядра увеличивается
- Радиус атома увеличивается
- Количество валентных электронов равно 7
- Притяжение валентных электронов к ядру уменьшается
- Способность отдавать электроны увеличивается
- Неметаллические свойства ослабевают
- Окислительная способность уменьшается

	$lue{lue}$	
Химические	CROUCTRA	гапогенов
	CDCFICIDA	

Химическа		7 WIND TOOK TO OBOTIOT BUT TUSTION OF THE						
я формула простого вещества	Взаимодейст вие	Взаимодейст вие с металлами	Взаимоде йствие	Взаимодействие с				
	с водородом		с водой	KF	KC1	KBr	KI	
F ₂								
Cl ₂								
Br ₂								
l ₂								

Химические свойства

Строение атомов галогенов:

```
F )2e )7e
Cl )2e )8e )7e
Br )2e ) 8e)18e )7e
I )2e )8e )18e )7e
```

Окислительные и неметаллические свойства ослабевают т.к. увеличивается \mathbf{R}_{ar}

Галогены присоединяют один, недостающий электрон и проявляют *окислительные свойства*

Галогены – типичные окислители и неметаллы

F₂ – самый сильный окислитель

1. Реагируют с металлами

$$2Al + 3Br_2^0 \longrightarrow 2AlBr_3^{-1}$$
 $Br_2^0 + 2e = 2Br^{-1} (Br_2^0 - окислитель , восстановление)$

2. Реагируют с водородом

$$Cl_{2}^{0} + H_{2} \longrightarrow 2 HCl^{-1}$$

$$Cl_2^{\ 0} + 2e = 2Cl^{-1}$$
 ($Cl_2^{\ 0}$ - окислитель , восстановление)

С водородом галогены образуют летучие водородные соединения **НГ** которые хорошо растворяются в воде.

Водные растворы НГ являются кислотами.

HF¹
HCl¹
HBr¹

Сила кислот увеличивается Восстановительная активность Устойчивость галогеноводородов галогенионов увеличивается уменьшается т.к. увеличивается R_{ar} галогена

В соединениях с металлами и водородом галогены проявляют степень окисления -1

Ионы галогенов способны только отдавать электроны и проявляют восстановительные свойства

 $2\Gamma^{-1}$ - $2e = \Gamma_2^{\ 0}$ (Γ^{-1} - восстановитель , окисление)

3. Более активный галоген вытесняет менее активный из его соединений с металлами и водородом.

Фтор в растворе не применяют, так как он активно реагирует с водой:

$$2F_2 + 2H_2O = 4HF + O_2$$

<u>Качественные реакции на галогенид-</u> ионы

- Качественные реакции на хлориды, бромиды и йодиды -образование нерастворимых галогенидов серебра:
- NaCl + AgNO $_3$ \rightarrow AgCl \downarrow + NaNO $_3$ белый творожистый осадок
- NaBr + AgNO $_3$ \rightarrow AgBr \downarrow + NaNO $_3$ желтоватый творожистый осадок
- NaI + AgNO $_3$ \rightarrow AgI \downarrow + NaNO $_3$ желтый творожистый осадок

Химические свойства

- Рассмотрим свойства галогенов на примере хлора:
- 1.Взаимодействие с металлами
- $2K + Cl_2 \rightarrow 2KCl$ $Mg + Cl_2 \rightarrow MgCl_2$
- 2.Реакции с неметаллами
- $H_2 + Cl_2 \rightarrow 2HCl$
- 3.Взаимодействие со щелочами на холоду
- 2NaOH + Cl₂ → NaCl + NaClO + H₂O
- 4.Взаимодействие со щелочами при нагревании
- $6NaOH + 3Cl_2 \rightarrow 5NaCl + NaClO_3 + 3H_2O$
- 5.Вытеснение менее активных галогенов из галогенидов
- $2KBr + Cl_2 \rightarrow 2KCl + Br_2$
- 6. С водой
- H₂O + Cl₂ ↔ HCl + HClO (хлорная вода)

Тефлон

Атомная энергетика

Фтор

Фторопластики

Нефтедобыча

Зубная паста

Отбеливатели

Хлор

Растворители

Бром

высокопрочный каучук

Йодированная соль

Дезинфекция белья

Красители

Медицина

Домашнее задание: § 50, зад 1 на стр169, упр. 1-6, задача 1 (с. 172)

Урок окончен. Спасибо за урок.