«Сложные эфиры и их применение»

ЦЕЛЬ:

Рассмотреть биологическую роль сложных эфиров.

ЗАДАЧИ:

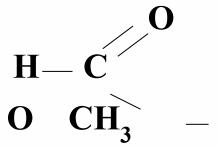
Изучить строение сложных эфиров, получение, их физические и химические свойства.

Введение

Сложные эфиры- являются функциональными производными карбоновых кислот. Они имеют огромное значение в жизни человека и широко применяются в медицине.

Общая характеристика класса

Сложные эфиры - это функциональные производные карбоновых или минеральных кислот, в которых гидроксильная группа заменена остатком спирта или фенола (-OR).


Номенклатура

Названия сложных эфиров производят от названия углеводородного радикала и названия кислоты, в котором вместо окончания -овая используют суффикс -оат, например:

$$CH_{3}-C$$

$$O-C_{2}H_{5}$$

- 1. сложный уксусно-этиловый эфир
- 2.этилацетат
- 3.этилэтаноат
- 4. этиловый эфир уксусной кислоты

- 1.сложный муравьино-метиловый эфир
- 2.метилформиа
- 3.метилметаноат
- 4.метиловый эфир муравьиной кислоты

Изомерия

Для сложных эфиров характерны следующие виды изомерии:

1. Изомерия углеродной цепи

2. Изомерия положения сложноэфирной группы

$${
m CH_3\text{-}CO\text{-}O\text{-}C_2H_5}$$
 ${
m C_2H_5\text{-}CO\text{-}O\text{-}CH_3}$ этил ацетат метилпропионат

3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота

$$O$$
 $CH_3 _ C/$ $CH_3 _ CH_3$ $CH_3 _ CH_3 _ C/$ OH метилацетат пентановая кислота

Получение

Одним из методов получения сложных эфиров является реакция этерификации:

Также сложные эфиры получают ацилированием спиртов ангидридами кислот:

$$CH_3 - C \not> O$$
 $CH_3 - C \not> O$ $CH_3 - C \nearrow$ CH_3

уксусный ангидрид

Сложные эфиры фенолов образуются при ацилировании фенолов или феноксидов щелочных металлов активными ацилирующими реагентами – ангидридами или хлорангидридами карбоновых кислот:

Физические свойства

CH COOC H	F	Farwron v.₩
CH ₃ COOC ₄ H ₉	Бутиловый эфир уксусной кислоты	Грушевый
C ₃ H ₇ COOCH ₃	Метиловый эфир масляной кислоты	Яблочный
C ₃ H ₇ COOC ₂ H ₅	Этиловый эфир масляной кислоты	Ананасовый
C ₄ H ₉ COOC ₂ H ₅	Этиловый эфир изовалерьяновой кислоты	Малиновый
C ₄ H ₉ COOC ₅ H ₁₁	Изоамиловый эфир изовалерьяновой кислоты	Банановый
CH ₃ COOCH ₂ C ₆ H ₅	Бензиловый эфир уксусной кислоты	Жасминовый
C ₆ H ₅ COOCH ₂ C ₆ H ₅	Бензиловый эфир бензойной кислоты	Цветочный

Сложные эфиры низших спиртов и карбоновых кислот представляют собой летучие жидкости. Многие сложные эфиры имеют приятных запах, они наряду с другими веществами обусловливают запах цветов, фруктов и ягод.

Химические свойства

Наиболее характерной химической реакцией сложных эфиров является разложение их водой (гидролиз). В результате гидролиза образуются соответствующие карбоновые кислоты и спирт. Эта реакция обратная этерификации, носит название реакции омыления:

Практически необратимая реакция омыления сложных эфиров протекает в присутствии щелочей:

Распространение в природе

Сложные эфиры, широко распространены в природе. Многие сложные эфиры карбоновых кислот и предельных спиртов имеют приятный запах и часто встречаются в растениях, придавая аромат цветам, запах плодам и ягодам.

ЭТИЛОВЫЙ ЭФИР МАСЛЯНОЙ КИСЛОТЫ – В ПЛОДАХ АНАНАСА

$$C_{3}H_{7}-C < 0$$
 $O - C_{2}H_{5}$

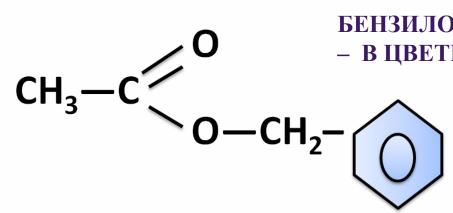
БУТИЛОВЫЙ ЭФИР УКСУСНОЙ КИСЛОТЫ –В ПЛОДАХ ГРУШИ

$$CH_3 - C < 0 < 0 < C_4H_9$$

МЕТИЛОВЫЙ ЭФИР МАСЛЯНОЙ КИСЛОТЫ – В ЯБЛОКАХ

$$C_3H_7-C < 0 < 0 < 0 < CH_3$$

ИЗОАМИЛОВЫЙ ЭФИР ИЗОВАЛЕРИАНОВОЙ КИСЛОТЫ – В БАНАНАХ

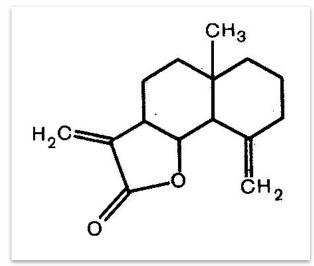

$$CH_3$$
 $CH-CH_2-C$
 $O-CH_2-CH_2-CH$
 CH_3
 CH_3

ЭТИЛОВЫЙ ЭФИР ИЗОВАЛЕРИАНОВОЙ КИСЛОТЫ – В ПЛОДАХ МАЛИНЫ

$$CH_{3}$$
 $CH-CH_{2}-C$
 $O-C_{2}H_{5}$
 CH_{3}

БЕНЗИЛОВЫЙ ЭФИР УКСУСНОЙ КИСЛОТЫ – В ЦВЕТКАХ ЖАСМИНА

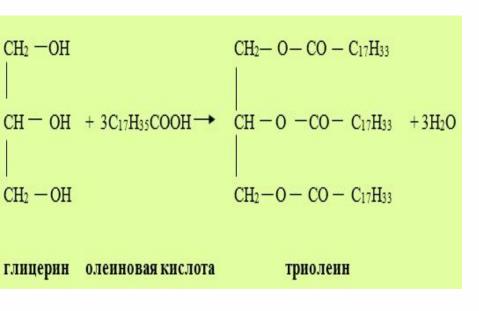
ТРИОЛЕИН –В СЕМЕНАХ МИНДАЛЯ



$$H_{2}C - O - CO - C_{17}H_{33}$$
 $HC - O - CO - C_{17}H_{33}$
 $H_{2}C - O - CO - C_{17}H_{33}$

БОРНИЛИЗОВАЛЕРИАНАТ – В КОРНЯХ ВАЛЕРИАНЫ

АЛАНТОЛАКТОН –В КОРНЯХ ДЕВЯСИЛА


Жиры

Это сложные эфиры глицерина и высших предельных и непредельных карбоновых кислот. Их называют триглицеридами.

Триглицериды **непредельных кислот** – маслянистые жидкости. Такие жиры называются маслами (подсолнечное масло, оливковое масло).

Триглицериды **предельных кислот** — твердые вещества. Они преобладают в животных жирах (коровье масло, свиное сало).

Триглицериды могут быть получены по реакции этерификации:

Мыла

ЭТО СОЛИ, ОБЫЧНО НАТРИЕВЫЕ ИЛИ КАЛИЕВЫЕ, ВЫСШИХ КАРБОНОВЫХ КИСЛОТ.

C₁₇H₃₅COONa Стеарат натрия ${
m C_{15}H_{31}COOK}$ Пальмиат калия

ПРИМОНОНИЕ

1. В медицине. Входит в состав многих препаратов. Например: новокаин.

Вводят внутривенно или внутримышечно. Пользуются при лечении тахикардии, поздних токсикозов беременности, язвенной болезни.

$$H_2N$$

Новокаин

2. Эфирные масла

Пахучая смесь жидких летучих веществ, выделенных из растительных материалов.

Эфирные масла влияют на бронхи, почки, печень, через которые масла выводятся из организма.

Не сильно токсичны при ингаляционном и наружном применении. Но при введении их внутрь — эфирные масла склеивают эритроциты, что вызывает малокровие или анемию.

Токсическое действие сложных эфиров

Клиническая картина, при отравлении сложными эфирами:

- •головная боль
- •тошнота
- •рвота
- •общая слабость или чрезмерная возбужденность
- •спутанность сознания

Первая медицинская помощь, при отравлении сложными эфирами:

- •удалить пострадавшего из зоны действия токсического соединения
- •вынести пострадавшего на свежий воздух и тепло укрыть
- •вызвать «скорую помощь»
- •дать седативные средства, крепкий чай
- •для профилактики пневмонии вводят антибиотики