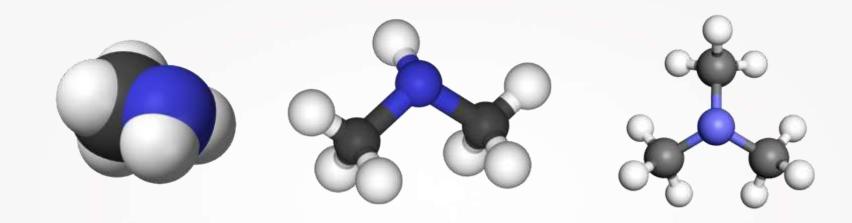

Амины

Амины — органические соединения, представляющие собой производные аммиака, в молекулах которых 1, 2 или 3 атома

па леперопоропиній рапикац

водорода замещены

H ₃ C-NH ₃ Метиламин	H ₃ C-NH-C ₂ H ₅ Метилэтиламин	H ₃ C-N-CH ₃
С ₆ Н ₅ —NН ₂ Фенилами н (анилин)	H ₃ C—NH—CH ₃ Диметиламин	СН ₃ Триметиламин


1. Изомерия углеродного скелета начинается с состава $C_4H_9NH_2$.

2. Положение функциональной группы $C_3H_7NH_2$.

$$CH_{3}-CH_{2}-CH_{2}-NH_{2}$$
 Пропиламин $H_{3}C-NH-C_{2}H_{5}$ Метилэтиламин $(CH_{3})_{3}N$ Триметиламин

3. Межклассовая изомерия: первичные, вторичные и третичные амины изомерны друг другу.

Физические свойства аминов



Метиламин, диметиламин и триметиламин — газобразные вещества, с запахом аммиака, хорошо растворяются в воде.

Связь N—Н является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи.

Химические свойства аминов

Амины как и аммиак проявляют свойства оснований. Основность усиливается от третичных к

первичным аминам.

$$NH_3 < R_3N < R-NH_2 < R_2NH$$

Амины как основания

$$NH_3 + H^+ \rightarrow NH_4^+$$

Аммиак Протон Ион аммония

$$CH_3 - NH_2 + H^+ \rightarrow [CH_3 - NH_3]^+ + OH^-$$

Метиламин Протон Ион метиламмония

В реакции с водой и кислотами амины выступают в роли основания.

Взаимодействие аммиака и аминов с

водой

$$NH_3 + H_2O \leftrightarrow NH_4 + OH_+$$

$$CH_3 - NH_2 + H_2O \rightarrow [CH_3 - NH_3]^+ + OH^-$$

А) Взаимодействие аммиака и аминов с водой приводит к образованию гидроксид ионов, то есть в растворе аммиака и аминов — щелочная среда.

Взаимодействие аммиака и аминов с кислотой

$$NH_3 + HCI \rightarrow NH_4^+CI^-$$
Аммиа Соляна Хлорид аммония $CH_3 - NH_2 + HCI \rightarrow [CH_3 - NH_3]^+CI^-$
Метилами Я Хлорид Метилами Я Метиламмония

Б) Аммиак реагирует с соляной кислотой с образованием хлорида аммония; метиламин реагирует с соляной кислотой и образует хлорид

DNIHOMMACHNITAM

Реакция горения

$$4CH_3NH_2 + 9O_2 \rightarrow 4CO_2 + 10H_2O + 2N_2$$

Амины горят с образованием углекислого газа, воды и азота.

$$CH_3CI + 2NH_3 \xrightarrow{t} CH_3 - NH_2 + NH_4CI$$
 $CH_3CI + CH_3NH_2 \rightarrow (CH_3)_2NH_2CI_+$

$$2CH_3CI + CH_3NH_2 \rightarrow (CH_3)_3NH^+CI^- + HCI$$

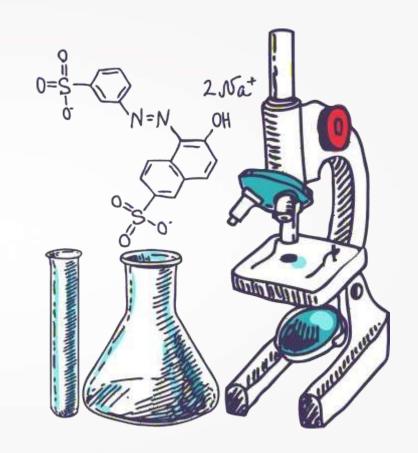
Основной способ получения аминов — алкилирование аммиака, которое происходит при нагревании алкилгалогенидов с аммиаком под давлением.

$$[CH_3 - NH_3]CI + NaOH$$
 $\rightarrow^t_{Xлоридмети}$
 \rightarrow^t_{R}
 \rightarrow^t_{R}
 \rightarrow^t_{R}
 \rightarrow^t_{R}
 \rightarrow^t_{R}
 \rightarrow^t_{R}

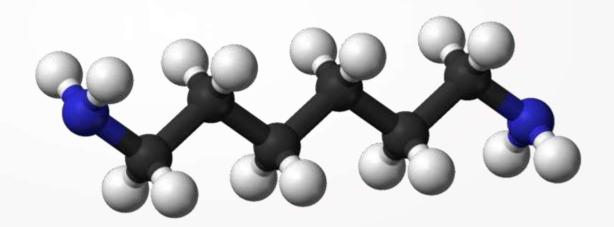
Действие щелочей на соли алкиламмония — лабораторный способ, который используют для получения первичных, вторичных, третичных аминов.

Взаимодействие спиртов с аммиаком

$$C_2H_5OH + NH_3 \rightarrow C_2H_5-NH_2 + H_2O$$
 Этанол Аммиак Этиламин Вода


При взаимодействии этанола с молекулой аммиака образуется этиламин и вода.

Восстановление нитросоединений


$$c_2^{t, \, kat \, Fe+HCl}$$
 $c_2^{t, \, kat \, Fe+HCl}$ $c_2^{t, \, kat \, Fe+HCl}$ $c_2^{t, \, kat \, Fe+HCl}$ $c_2^{t, \, kat \, Fe+HCl}$ Нитроэтан Этиламин Вода

Нитроэтан восстанавливается до этиламина.

Амины используют при получении лекарственных веществ, красителей и исходных продуктов для органического синтеза.

Гексаметилендиамин при поликонденсации с адипиновой кислотой даёт полиамидные волокна.

