АЛКИНЫ

Понятие об алкинах

 Алкины – углеводороды, содержащие в молекуле одну тройную связь между атомами углерода, а качественный и количественный состав выражается общей формулой

$$C_{n}H_{2n-2}$$
, где $n \ge 2$.

 Алкины относятся к непредельным углеводородам, так как их молекулы содержат меньшее число атомов водорода, чем насыщенные.

Формулы и названия алкинов.

Формулы	Названия
C,H,	Этин
C,H,	Пропин
C,H,	Бутин
C,H,	Пентин
C, H,	Гексин
C,H,	Гептин
C 8H 14	Октин
С,Н,	Нонин
C H 18	Децин

Из приведенного перечня веществ выпишите в тетрадь алкины и дайте им названия по номенклатуре IUPAC

1.
$$CH_3 - CH_2 - CH_2 - C \equiv CH$$

3.
$$CH_2 = CH - C = CH_2$$

| CH_3

Изомерия алкинов

Структурная изомерия

1. Изомерия положения тройной связи (начиная с
$$C_4H_6$$
): CH \equiv C−C H_2 −C H_3 CH $_3$ −C \equiv C−C H_3 бутин-2

3. Межклассовая изомерия с алкадиенами и циклоалкенами, (начиная с С₄H₈):

$$CH = CH$$
 $CH = CH_2 - CH_2$
 $CH_2 = CH - CH = CH_2$
 $CH_2 - CH_2$
 $CH_2 - CH_2$
 $CH_2 - CH_2$
 $CH_2 - CH_2$
 $CH_3 - CH_2$

Выполните упражнение:

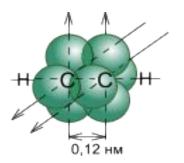
$$CH_3 - C \equiv C - CH_2 - CH_3$$
 CH_3

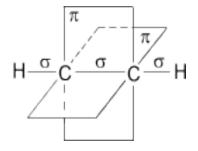
- Назовите вещество.
- Составьте к нему три изомера разных видов изомерии. Назовите изомеры.

Физические свойства.

- При обычных условиях алкины
- □ C2H2-C4H6 газы,
- □ C5H8-C16H30 жидкости,
- □ с С17Н32 твердые вещества.
- имеют более высокие температуры кипения, чем аналоги в алкенах.
- плохо растворимы в воде, лучше в органических растворителях.

Строение ацетилена.


Углеродные атомы в молекуле ацетилена находятся в состоянии sp-гибридизации. Это означает, что каждый атом углерода обладает двумя гибридными sp-орбиталями, оси которых расположены на одной линии под углом 180° друг к другу, а две p-орбитали остаются негибридными.



sp- Гибридные орбитали двух атомов углерода в состоянии,предшествующем образованию тройной связи и связей С–Н

Строение ацетелена.

По одной из двух гибридных орбиталей каждого атома углерода взаимно перекрываются, приводя к образованию s- связи между атомами углерода. Каждая оставшаяся гибридная орбиталь перекрывается с s- орбиталью атома водорода, образуя сигма- связь С–Н.

Схематическое изображение строения молекулы ацетилена (ядра атомов углерода и водорода на одной прямой, две р- связи между атомами углерода находятся в двух взаимно перпендикулярных плоскостях)

Химические свойства.

Реакции присоединения.

1) <u>Гидрирование</u> осуществляется при нагревании с теми же металлическими катализаторами (Ni, Pd или Pt), что и в случае алкенов, но с меньшей скоростью.

-
$$CH_3$$
- $C\equiv CH + H_2 (t^\circ, Pd) \rightarrow CH_3$ - $CH=CH_2$

-
$$CH_3$$
- $CH=CH_2$ + H_2 (t°,Pd) \rightarrow CH_3 - CH_2 - CH_3

2) Галогенирование.

Алкины обесцвечивают бромную воду (качественная реакция на тройную связь). Реакция галогенирования алкинов протекает

медленнее, чем алкенов.

- $HC \equiv CH + Br_2 \rightarrow CHBr \equiv CHBr$
- CHBr=CHBr $\overline{+}$ Br, \rightarrow CHBr,-CHBr,
 - 3) Гидрогалогенирование. Образующиеся продукты определяются правилом Марковникова.
- CH₃-C≡CH + HBr → CH₃-CBr=CH₂
 CH₃-CBr=CH₂ + HBr → CH₃-CBr₂-CH₃

4) <u>Гидратация</u> (реакция Кучерова). Присоединение воды осуществляется в присутствии сульфата ртути. Эту реакцию открыл и исследовал в 1881 году М.Г.Кучеров.

Присоединение воды идет по правилу Марковникова, образующийся при этом неустойчивый спирт с гидроксильной группой при двойной связи (так называемый, енол) изомеризуется в более стабильное карбонильное соединение - кетон.

$$C_{2}H_{5}-C \equiv CH + H_{2}O \xrightarrow{\text{HgSO4}} C_{2}H_{5} - C - CH_{3}$$

Правило В.В.Марковникова:
водород присоединяется к
наиболее гидрогенизированному
атому углерода при двойной
связи, то есть к атому углерода
с наибольшим числом
водородных атомов.

5) Полимеризация.

Алкины ввиду наличия тройной связи склонны к реакциям полимеризации, которые могут протекать в нескольких направлениях:

а) Под воздействием комплексных солей меди происходит димеризация и линейная тримеризация ацетилена.

-
$$HC \equiv CH + HC \equiv CH \xrightarrow{kat} CH_2 = CH - C \equiv CH$$

-
$$CH_2$$
= CH - C = CH + HC = CH \xrightarrow{kat} CH_2 = CH - C = C - CH = CH_2

б) Тримеризация (для ацетилена)

$$3CH\equiv CH \xrightarrow{Cakt.,t} C_6H_6$$
 (бензол)

Кислотные свойства.

6) Водородные атомы ацетилена способны замещаться металлами с образованием ацетиленидов. Так, при действии на ацетилен металлического натрия или амида натрия образуется ацетиленид натрия.

$$HC\equiv CH + 2Na \rightarrow NaC\equiv CNa + H_2$$
 Ацетилениды серебра и меди получают взаимодействием с аммиачными растворами соответственно оксида серебра и хлорида меди. $HC\equiv CH + Ag_2O \rightarrow AgC\equiv CAg\downarrow + H_2O$ (аммиачный p-p)

$$HC\equiv CH + CuCl_2 \rightarrow CuC\equiv CCu\downarrow + 2HCl$$
 (аммиачный p-p)

Окисление.

7) Горение.

$$2CH \equiv CH + 4O_2 \rightarrow CO_2 + 2H_2O + 3C \downarrow$$
 Так как много углерода в молекулах алкинов, они горят коптящим пламенем. При вдувании кислорода - светятся, $t = 2500$ °C. $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O + Q$

8) В присутствии перманганата калия ацетилен легко окисляется в до щавелевой кислоты (обесцвечивание раствора КМпО₄ является качественной реакцией на наличие тройной связи).

 $3C_2H_2 + 8KMnO_4 + 4H_2O \rightarrow 3HOOC\text{-}COOH + +8MnO_2 + 8KOH$

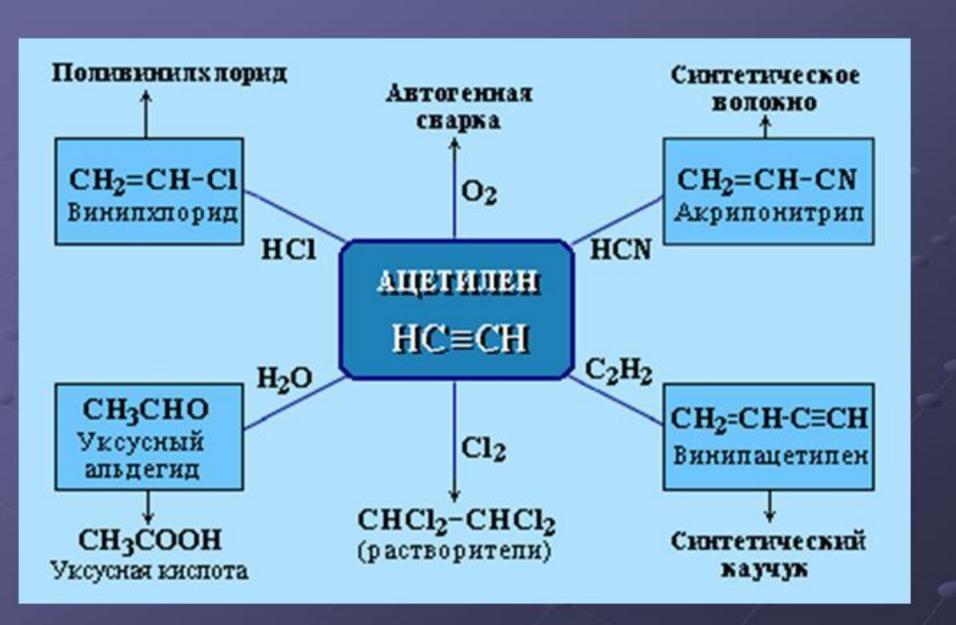
Получение.

1) В промышленноси ацетилен получают высокотемпературным пиролизом метана.

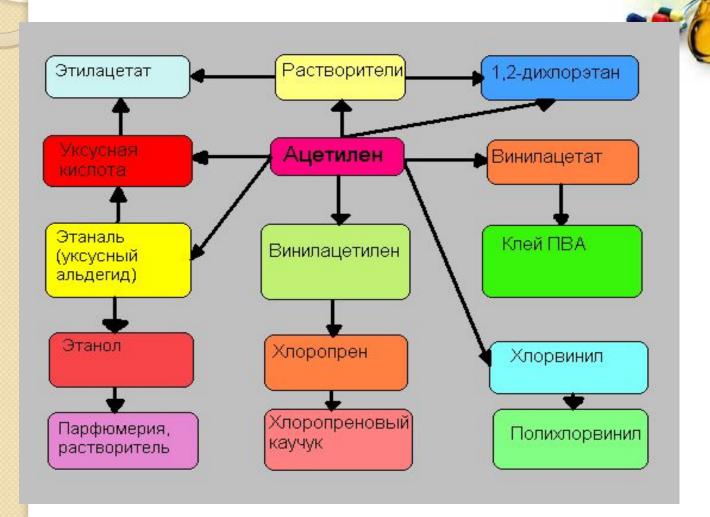
$$2CH_4 \rightarrow HC \equiv CH + 3H_2$$

2) Дегидрирование алканов

$$CH_3 - CH_3 (Ni, t) \leftrightarrow 2H_2 + CH \equiv CH$$


3) Ацетилен получают **карбидным способом** при разложении карбида кальция водой.

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + HC \equiv CH$$


4) Алкины можно получить дегидрогалогенированием дигалогенопроизводных парафинов. Атомы галогена при этом могут быть расположены как у соседних атомов углерода, так и у одного углеродного атома.

$$CH_3$$
– $CH(Br)$ – $CH_2(Br) + 2 KOH$ — CH_3 – C = $CH + 2KBr + 2H_2O$

$$CH_3$$
– $C(Br_2)$ – CH_2 – CH_3 +2KOH \rightarrow CH3– $C\equiv$ C– CH_3 +2KBr+2H $_2$ O

Применение алкинов

Осуществить превращения:

1.
$$CH = CH + 2NaNH_2 \rightarrow NaC = CNa + 2NH_3$$

2. NaC
$$\equiv$$
CNa + 2CH₃I \rightarrow CH₃-C \equiv C-CH₃ + 2NaI

3.
$$CH_3-C \equiv C-CH_3 + H_2O \rightarrow CH_3-(C=O) - CH_2-CH_3$$

1.
$$CH_3$$
- $C\equiv CH + NaNH_2 \rightarrow CH_3$ - $C\equiv CNa + NH_3$

2.
$$CH_3$$
- $C\equiv CNa + CH_3I \rightarrow CH_3$ - $C\equiv C$ - $CH_3 + 2NaI$

3.
$$CH_3$$
- $C \equiv C$ - CH_3 + $HBr \rightarrow CH_3$ - CBr = CH - CH_3

4. CH_3 -CBr=CH- CH_3 + $HBr \rightarrow CH_3$ - CBr_2 - CH_2 - CH_3

ДОМАШНЕЕ ЗАДАНИЕ

Выучить теорию.

Составить уравнения реакций, соответствующих схемам:

- 1) ацетилен →винилацетилен→ 2-хлорбутадиен-1,3 →хлоропреновый каучук;
 - 2) метан→ ацетилен →уксусный альдегид→ этанол→ этилен →дибромэтан →ацетилен →бензол.