Классификация

органических

веществ

Основные классификационные признаки:

1.строение углеродной цепи 2.наличие кратной связи (двойной или тройной) 3.тип функциональной группы

углеводороды – это простейшие органические соединения, молекулы которых образованы только атомами углерода и водорода

CxHv

Углеводороды

делятся на :

КЛАСС	ФОРМУЛ А	СУФФИКС ПРИСТАВК А	ПРИМЕР
АЛКАНЫ предельные насыщенные	CnH2n+2	- AH	СН3 – СН2 – СН2 – СН3 все связи одинарные
АЛКЕНЫ непредельны е ненасыщенны е	CnH2n	- EH	CH2 = CH – CH2 – CH3 одна двойная связь ≡
АЛКИНЫ непредельны е ненасыщенны е	CnH2n-2	- ИН	СН С – СН₂ – СН₃ одна тройная связь
диены непредельны е ненасыщенны е	CnH2n-2	- ДИЕН	CH2 = CH – CH = CH2 две двойные связи

Функциональная группа – это структурный фрагмент молекулы, единый для конкретного гомологического ряда и определяющий характерные химические свойства данного класса соелинении

Кислородсодержащ ие органические вещества делятся на

КЛАСС	ФУНКЦИОНАЛЬН АЯ ГРУППА	НАЗВАНИЕ ВЕЩЕСТВА	ПРИМЕР
КАРБОНОВЫЕ КИСЛОТЫ СпН2nO2	-C = O ОН КАРБОКСИЛЬНАЯ	-ОВАЯ КИСЛОТА	CH ₃ – C = O ОН этановая к - та
СЛОЖНЫЕ ЭФИРЫ CnH2nO2	-C = O	- ИЛОВЫЙ ЭФИР ? КИСЛОТЫ	CH ₃ – C = O O – CH ₃
АЛЬДЕГИДЫ	-c = 0	- АЛЬ	CH3 - C = O
КЕТОНЫ CnH2nO	-C = O карбонильная	- ОН у какого атома	CH ₃ – CH ₃
ПРОСТЫЕ ЭФИРЫ CnH2n+2O	- O -	? – ИЛ ? – ОВЫЙ ЭФИР	CH₃ –CH₂ – O – CH₃ метилэтиловый әфир _I
МНОГОАТОМНЫЕ СПИРТЫ CnH2n+2Ok	несколько групп ОН	-много ОЛ –у каких атомов	CH ₂ – CH – CH ₂ OH OH OH пропантриол – 1,2,3
ОДНОАТОМНЫЕ СПИРТЫ CnH2n+2O	одна группа ОН гидроксильная	-ОЛ – у какого атома -иловый спирт	CH ₃ – CH ₂ - OH

ИПЫ органически х реакции

1. Реакции замещения

Характерны для веществ с одинарными СВЯЗЯМИ, Т.е. ДЛЯ **АЛКАНОВ**

Для ароматических углеводородов, изза их большого стремления сохранить ароматическую систему

Для алкинов – 1, из-за большой прочности тройной СВЯЗИ

Замещать атомы водорода можно на:

AIUMBII AJIUI EHUB. хлор, бромреакция галогенирования $CH_3 - CH_3 + CI_2$ $CH_3 - CH_2$

На нитрогруппу –

реакция нитрования

углеводородн ый радикал реакция алкилирования

2.Реакции присоединени Я

Характерны для веществ с кратными (двойными или тройными связями

Возможны у ароматических углеводородов

Протекают за счёт последовательног о разрыва третьей или второй связи

Присоединя mЬ возможно:

1. Водород - реакция гидрирования

2.1 алогены (хлор, бром, иод) – реакция галогенирования

$$CH_2 = CH_2 + Cl_2 \qquad |CH_2 - |CH_2|$$

$$Cl \qquad Cl \qquad Cl$$

хлороводород, бромоводород, иодоводород – Реакция гидрогалогенирован ИЯ $CH_2 = CH_2 + HCI$ CH₃-CH₂

4.Воду –реакция гидратации

$$CH_2 = CH_2 + H_2O \qquad CH_3 - CH_2$$

OH

3.Реакции отщепления

Молекулы водорода – реакция дегидрирования

$$CH_3 - CH_3 - CH_2 + CH_2 + H_2$$

Атомов галогенов – дегалогенирование

$$CH_2-CH_2+Zn \longrightarrow CH_2=CH_2$$

$$+ZnCl_2$$

CI CI

молекулы воды – реакция дегидратации

$$CH_3 - CH_2 \rightleftharpoons CH_2 = CH_2 + H_2O$$

Молекулы галогеноводорода – дегидрогалогенировани е

CI

4.Реакции окисления

Реакция горения

$$\langle C \rangle \rightarrow CO_2$$

 $\langle H \rangle \rightarrow H_2O$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Горят практически BCe органические вещества

5. Реакция полимеризации - получение сложного вещества, в молекуле которого многократно повторяются одни и те же звенья молекул вещества более простого по составу и строению

Образование молекулы полимера происходит за счёт разрыва кратных связей

$$n CH_2 = CH_2 \longrightarrow (-CH_2 - CH_2 -)_n$$