
Открытие периодического закона. Периодический закон Д.И. Менделеева.

Открытию периодического закона предшествовало накопление знаний о веществах и свойствах. По мере открытия новых химических элементов, изучения состава и свойств их соединений появлялись первые попытки классифицировать элементы по каким-либо признакам. В общей сложности до Д.И. Менделеева было предпринято более 50 попыток классификации химических элементов. Ни одна из попыток не привела к созданию системы, отражающей взаимосвязь элементов, выявляющей природу их сходства и различия, имеющей предсказательный характер.

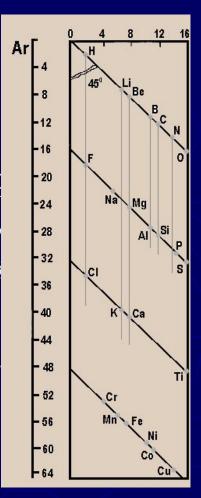
Первые попытки классифицировать элементы

Закон триад.

В 1817 году немецкий химик Иоганн Вольфганг Доберейнер на основе сходства химической природы некоторых элементов располагает их отдельными триадами.

Литий Li - 6,94 Натрий Na - 23,00 Калий К - 39,1

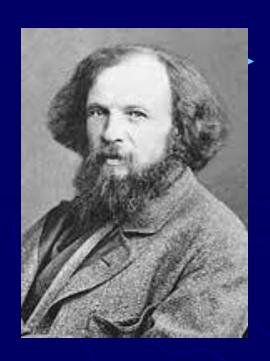
Кальций Са -40,07 Стронций Sr -87,63 Барий Ва - 137,37


Фосфор Р - 31,04 Мышьяк Аs -74,96 Сурьма Sb - 121,8

Сера S - 32,06 Селен Se - 79,2 Теллур Te - 127,5

Хлор Cl - 35,46 Бром Br - 79,92 Йод I - 126,92

«Теллуровый винт»


Французский геолог и химик Александр Эмиль Бегуйе де Шанкуртуа в 1862 году предложил систематизацию химических элементов, основанную на закономерном изменении атомных масс

Закон октав

18 августа 1865 года Джон Александр Рейна Ньюлендс опубликовал таблицу элементов, назвав её «законом октав», который формулировался следующим образом: «Номера аналогичных элементов, как правило, отличаются или на целое число семь, или на кратное семи; другими словами, члены одной и той же группы соотносятся друг с другом в том же отношении, как и крайние точки одной или больше октав в музыке».

	No.		No.	7	No.		No.		No.		No.		Йo.		No.
H Ll	1	F	8	CI	15	Co	22	Br	29	Pd	36	1	42	Pt	} 50
Ц	2	Na	9	K	16	Cu	23	Rb	30	Ag	37	Cs	44	n	53
Ga	3	Mg	10	Ca	17		25	Sr	31	Cd	38	Ba	45	Pb	54
В	4	Al	11	Cr	19	Y	24	Ce La	33	U	40	Ta	46	Тъ	56
C	5	SL	-12	'n	18	In	26	Zr	32	Sn	39	W	47	Hg	52
N	6	P	13	Mn	20	As	27	Di	34	Sb	41	Nb	48	Bi	55
0			14	Fe	21	Se	28	Mo Ro Ru	35	Te,	43	Au	49	Cs	51

Д.И. Менделеев родился в 1834 году в Тобольске и был последним, семнадцатым по счету ребенком в семье директора Тобольской гимназии Ивана Павловича Менделеева и его жены Марии Дмитриевны.

Зимой 1867-68 года Менделеев начал писать учебник "Основы химии" и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность Основной закон химии - Периодический закон был открыт Д.И. Менделеевым в 1869 году в то время, когда атом считался неделимым и о его внутреннем строении ничего не было известно.

В основу Периодического закона Д.И. Менделеев положил атомные массы (ранее - атомные веса) и химические свойства элементов.

Периодический закон в формулировке Д.И. Менделеева:

 Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

Основные положения

- 1. В периоде слева направо:
- 1) Относительная атомная масса увеличивается
- 2) Заряд ядра увеличивается
- ▶ 3) Количество энергоуровней постоянно
- 4) Количество электронов на внешнем уровне увеличивается
- 5) Радиус атомов уменьшается
- 6) Электроотрицательность увеличивается

- 2. В группе, в главной подгруппе сверху вниз:
- ▶ 1) Относительная атомная масса увеличивается
- 2) Число электронов на внешнем уровне постоянно
- 3) Заряд ядра увеличивается
- 4) Количество энергоуровней увеличивается
- 5) Радиус атомов увеличивается
- 6) Электроотрицательность уменьшается.

- 3. Изменение свойств летучих водородных соединений:
- в группах главных подгруппах с ростом заряда ядра прочность летучих водородных соединений уменьшается, а кислотные свойства их водных растворов усиливаются (основные свойства уменьшаются);
- 2) в периодах слева направо кислотные свойства летучих водородных соединений в водных растворах усиливаются (основные уменьшаются), а прочность уменьшается;
- в группах с ростом заряда ядра в главных подгруппах валентность элемента в летучих водородных соединениях не изменяется, в периодах слева направо уменьшается от IV до I.

- 4. Изменение свойств высших оксидов и соответствующих им гидроксидов (кислородсодержащие кислоты неметаллов и основания металлов):
- в периодах слева направо свойства высших оксидов и соответствующих им гидроксидов изменяются от основных через амфотерные к кислотным;
- хислотные свойства высших оксидов и соответствующих им гидроксидов с ростом заряда ядра в периоде усиливаются, основные уменьшаются, прочность уменьшается;
- 3) в группах главных подгруппах у высших оксидов и соответствующих им гидроксидов с ростом заряда ядра прочность растёт, кислотные свойства уменьшаются, основные усиливаются;
- 4) в группах с ростом заряда ядра в главных подгруппах валентность элемента в высших оксидах не изменяется, в периодах слева направо увеличивается от I до VIII.

- 5. Завершенность внешнего уровня если на внешнем уровне атома 8 электронов (для водорода и гелия 2 электрона)
- 6. Металлические свойства способность атома отдавать электроны до завершения внешнего уровня.
- 7. Неметаллические свойства способность атома принимать электроны до завершения внешнего уровня.
- 8. Электроотрицательность способность атома в молекуле притягивать к себе электроны

- 9. Семейства элементов:
- Щелочные металлы (1 группа «А») – Li, Na, K, Rb, Cs, Fr
- ▶ Галогены (7 группа «А») F, Cl, Br, I
- Инертные газы (8 группа «А») Не, Ne, Ar, Xe, Rn
- ▶ Халькогены (6 группа «А») О, S, Se, Te, Po
- Щелочноземельные металлы (2 группа «А») – Са, Sr, Ba, Ra
- 8. Радиус атома расстояние от ядра атома до внешнего уровня

Закрепление:

Домашнее задание: