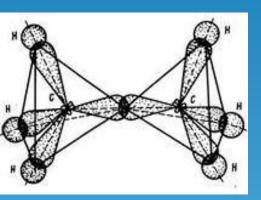
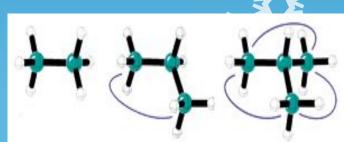


Алканы



Выполнил учитель химии высшей квалификационной категории Ч Зайцева Наталья Александровна У МБОУ СОШ № 188 г. Новосибирска

Алканы – предельные углеводороды, атомы углерода которых содержат одинарные связи


Общая формула:

 $C_n H_{2n+2}$, где n = 1,2,3

Особенности строения:

- Незамкнутая цепочка атомов углерода

- Все связи С-С

Физические свойства алканов

При обычных условиях

 $C_1 - C_4 -$ газы,

 $C_5 - C_{17} - жидкости,$

С₁₈ – **С**_{.....} - твердые вещества.

С увеличением относительной молекулярной массы увеличивается температура кипения, плавления и плотность. Температура плавления и кипения понижается от менее разветвленных к более разветвленным. Газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла

Физические свойства алканов

	\$1			
Название	Формула	t _{пл} °С	t _{кип} °C	o ²⁰ 4
Метан	CH4	-182,5	-161,5	0,4150
Этан	C2H6	-182,8	-88,6	(при -164°C) 0,5610
Пропан	C3H8	-187,7	-42	(при -100°C) 0,5853
Бутан	C4H10	-138,3	-0,5	(при -44,5°C) 0,6000
				(при 0°С)
Пентан	C5H12	-129,7	+36,1	0,6262
Гексан	C6H14	-95,3	68,7	0,6594
Гептан	C7H16	-90,6	98,4	0,6838
Октан	C8H18	-56,8	124,7	0,7025
Нонан	C9H20	-53,7	150,8	0,7176
Декан	C10H22	-29,6	174,0	0,7300
Пентадекан Эйкозан	C15H32 C20H42	+10 26.0	270,6	0,7683 0,7780
ЭИКОЗАН	020042	36,8	342,7	0,7700
2000				(при 37°C)
Пентакозан	C25H52	53,7	400	0,8012
Триаконтан	C30H62	66,1	457	0,8097

Гомологический ряд алканов

Радикалы

Формула СН ₄	Название Метан
C ₂ H ₆	Этан
C3H8	Пропан
C ₄ H ₁₀	Бутан
C ₅ H ₁₂	Пентан
C ₆ H ₁₄	Гексан
C ₇ H ₁₆	Гептан
C ₈ H ₁₈	Октан
C ₉ H ₂₀	Нонан
C ₁₀ H ₂₂	Декан

Формула СН _з -	Название Метил
С ₂ Н ₅ -	Этил
С ₃ Н ₇ -	Пропил
C ₄ H ₉ -	Бутил
C ₅ H ₁₁ -	Пентил
С _в Н ₁₃ -	Гексил
C ₇ H ₁₅ -	Гептил
C ₈ H ₁₇ -	Октил
С ₉ Н ₁₉ -	Нонил
C ₁₀ H ₂₁ -	Децил
	(декил)

Структурные формулы первых 10 членов

Метан СН4

Этан СН3—СН3

Пропан СН3—СН2—СН3

Бутан СН3-СН2-СН2-СН3

CH3-CH2-CH2-CH3 Пентан

Гексан CH3-CH2-CH2-CH2-CH3

Гептан CH3-CH2-CH2-CH2-CH2-CH3

OKTAH CH3-CH2-CH2-CH2-CH2-CH2-CH3

CH3-CH2-CH2-CH2-CH2-CH2-CH3

Декан CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH3

Номенклатура алканов

- 1. выбрать самую длинную углеродную цепь
- 2. Пронумеровать углероды с того конца, где ближе расположен радикал

(радикал - одновалентная частица, полученная при отщеплении атома водорода от молекулы алкана, название радикала образуется от названия соответствующего алкана с заменой суффикса – ан на суффикс – ил)

3. назвать радикал указав место расположения радикала

(если группы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых групп указывают приставками ди-, три-, тетра-. Если группы неодинаковые, то их названия перечисляются в алфавитном порядке)

4. назвать длинную углеродную цепь

Номенклатура алканов

Номенклатура алканов

CH ₃ - CH - CH ₃ CH ₃	2-метил <mark>пропан</mark>
CH ₃ - CH - CH ₂ - CH ₃ CH ₃	2-метил <mark>бутан</mark>
CH ₃ - CH - CH ₂ - CH ₂ - CH ₃ CH ₂ I CH ₃	3-метил гексан
CH ₃ CH ₃ - C - CH ₂ - CH - CH ₃ I I CH ₃ CH ₃	2,2,4-триметил пентан
CH ₃ - CH ₂ - CH - CH ₂ - CH ₃ CH ₃ CH ₂ CH ₃ CH ₃	3-метил-5-этил гептан

Изомерия алканов

Структурная изомерия углеродного скелета - атомы углерода алкана образовывают цепи различного строения.

Первые три члена гомологического ряда алканов изомеров не имеют.

Число изомеров в ряду алканов

Молекулярная формула	Число структурных изомеров
CH4	1
C2H6	1
C3H8	1
C4H10	2
C5H12	3
C6H14	5
C7H16	9
C8H18	18
C9H20	35
C ₁₀ H ₂₂	75
C ₁₅ H ₃₂	4347

Изомерия алканов

Изомеры состава С4Н10

Изомерия алканов

Поворотная изомерия алканов

Вращение атомов вокруг s-связи не будет приводить к ее разрыву. В результате внутримолекулярного вращения по s-связям C-C молекулы алканов, начиная с этана С2Н6, могут принимать разные геометрические формы. Различные пространственные формы молекулы, переходящие друг в друга путем вращения вокруг s-связей C-C, называют конформациями или поворотными изомерами (конформерами).

Поворотные изомеры молекулы представляют собой энергетически неравноценные ее состояния. Их взаимопревращение происходит быстро и постоянно в результате теплового движения. Поэтому поворотные изомеры не удается выделить в индивидуальном виде, но их существование доказано физическими методами. Некоторые конформации более устойчивы (энергетически выгодны) и молекула пребывает в таких состояниях более длительное время.

Получение алканов. Природный газ

Важнейшим источником алканов в природе является природный газ, минеральное углеводородное сырье нефть и сопутствующие ей нефтяные газы. Природный газ на 95 % состоит из метана. Такой же состав имеет болотный газ, образующийся в результате переработки бактериями (гниения) углеводов. Попутные нефтяные газы состоят в основном из этана, пропана, бутана и частично пентана. Их отделяют от нефти на специальных установках по подготовке нефти. Одновременно с газами нефть очищается от воды, грязи и песка.

Из нефти при ее разгонке (перегонке, дистилляции) отбирая последовательно все более и более высококипящие фракции получают: бензины - т. кип. от 40 до 180 С, керосин 180-230 С, (С11-С12); легкий газойль (дизельное топливо) 230-305 С (С13-С17); тяжелый газойль и легкий дистиллят смазочного масла 305-405 С (С18-С25); смазочные масла 405-515 С (С26-С38). Остаток после перегонки нефти называется асфальтом или битумом.

Способы получения алканов

1. Гидрирование угля под давлением, гидрирование СО СО2 в присутствии катализаторов (Fe, Co, Ni) при повышенной температуре

400°C,p

$$C + H2 \rightarrow CnH2n+2$$
200°C,Ni

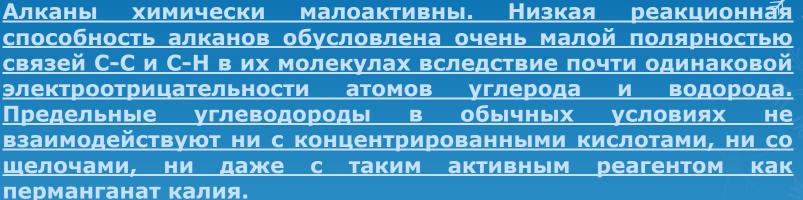
kat

$$R-CH=CH-R'+H_2 \rightarrow R-CH_2-CH_2-R'$$

2. Реакция Вюрца, взаимодействие натрия на с галогенопроизводнымие углеводородов

3. Термическое декарбоксилирование солей карбоновых кислот в присутствии щелочей:

4. Электролиз солей карбоновых кислот (реакция Кольбе)



Химические свойства »

<u>Для них свойственны реакции замещения водородных атомов и расщепления.</u>

В этих реакциях происходит гомолитическое расщепление ковалентных связей, т. е. они осуществляются по свободнорадикальному (цепному) механизму.

Реакции вследствие прочности связей С-С и С-Н протекают или при нагревании, или на свету, или с применением катализаторов.

Химические свойства »

1. Галогенирование:

$$CH_4 + CI_2 \rightarrow CH_3CI + HCI$$
 $CH_3CI + CI_2 \rightarrow CH_2CI_2 + HCI$
 $CH_2CI_2 + CI_2 \rightarrow CHCI_3 + HCI$
 $CHCI_3 + CI_2 \rightarrow CCI_4 + HCI$

2. Реакция М.И. Коновалова - замещение атома водорода нитрогруппой при температуре до 140°C с разбавленной (10%-ной) азотной кислотой под давлением:

Химические свойства »

3. Крекинг. При высокой температуре в присутствии катализаторов предельные углеводороды подвергаются расщеплению, которое называется крекингом. При крекинге происходит гомолитический разрыв углерод-углеродных связей с образованием насыщенных и ненасыщенных углеводородов с более короткими цепями.

400°C

2CH4
$$\rightarrow$$
 H-C=C-H(ацетилен) + 3H2

- 4. Изомеризация при наличии катализаторов и нагреваний углеводороды нормального строения подвергаются перестройке углеродного скелета с образованием алканов разветвленного строения.
- 5. Окисление. При поджигании на воздухе алканы горят, превращаясь в СО2 и воду и выделяя большое количество тепла:

Применение:

Метан -основной компонент природных и попутных газов, широко используется в качестве промышленного и бытового газа. Перерабатывается в промышленности в ацетилен, газовую сажу, фторо- и хлоропроизводные.

Низшие члены гомологического ряда используются для получения соответствующих непредельных соединений реакцией дегидрирования. Смесь пропана и бутана используется в качестве бытового топлива. Средние члены гомологического ряда применяются как растворители и моторные топлива.

Большое промышленное значение имеет окисление высших предельных углеводородов — парафинов с числом углеродных атомов 20-25. Этим путем получают синтетические жирные кислоты с различной длиной цепи, которые используются для производства мыл, различных моющих средств, смазочных материалов, лаков и эмалей.

Жидкие углеводороды используются как горючее (они входят в состав бензина и керосина).

Алканы широко используются в органическом синтезе.

Контроль знаний

