Дать название соединению

Дать название

- Cu₂o
- Cr_2O_7
- P_2O_5
- Na₂O
- CaO
- K₂O
- AL₂O₃
- FeO
- Fe₂O₃

Написать формулу

- Гидроксид меди (II)
- Гидроксид натрия
- Гидроксид кальция
- Гидроксид калия
- Гидроксид алюминия
- Гидроксид железа (II)
- Гидроксид железа(III)
- Соотнести оксид и гидроксид образованные одинаковыми ионами металла

Кислоты

- Мы познакомились с раствором хлороводорода в воде HCL – соляной кислотой.
- Кислотами могут быть не только <u>бинарные</u> <u>соединения</u> (соединения состоящие из 2-ух видов атомов), третьим элементом как правило является кислород O_{5} .

Кислоты

Кислородсодержащие

- Азотная кислота НNО₃.
- Азотистая кислота HNO₂.
- Серная кислота H_2SO_4 .
- Сернистая кислота H_2SO_3 .
- Угольная кислота H_2CO_3 .
- Кремниевая кислота H_2SiO_3 .
- Фосфорная кислота $H_{_3}PO_{_4}$.

Бескислородные кислоты

- Хлороводородная кислота HCl.
- Фтороводородная кислота HF.
- Бромоводородная кислота HBr.
- Иодоводородная кислота НІ.
- Сероводородная кислота H₂S.

Кислоты – сложные вещества, молекулы которых состоят из атомов водорода и кислотного остатка.

$H (NO_{3})$

Составим алгоритм определения с. о. атома неметалла, образующего кислотный остаток в молекуле кислоты:

- 1. **Следует помнить!** Сумма степеней окисления атомов химических элементов в соединении равна нулю. С. о. кислорода –2, с.о. водорода +1.
- 2. Неизвестную с. о. элемента в формуле кислоты обозначаем +x.
- 3. Находим сумму степеней окисления всех химических элементов в формуле кислоты и приравниваем ее к нулю.
- 4. Решаем уравнения с одним неизвестным и вычисляем х.

С.о. атома неметалла в кислотном остатке

• Например, нужно сравнить с. о. серы в серной и сернистой кислотах.

$$H_2^{+1}S^{+X}O_4^{-2}$$
,
 $(+1)\cdot 2 + (+x) + (-2)\cdot 4 = 0$,
 $+x = +6$.

С. о. серы в серной кислоте +6.

$$H_2^{+1}S^{+x}O_3^{-2}$$
,
 $(+1) \cdot 2 + (+x) + (-2) \cdot 3 = 0$,
 $+x = +4$.

С. о. серы в сернистой кислоте +4.

• Кислота

 Соответствующий оксид неметалла

- Азотная $H^{+1}N^{+5}O_3^{-2}$
- Азотистая $H^{+1}N^{+3}O_3^{-2}$
- Серная $H_2^{+1}S^{+6}O_4^{-2}$
- Сернистая $H_2^{+1}S^{+4}O_3^{-2}$
- Угольная $H_2^{+1}C^{+4}O_3^{-2}$
- Кремниевая $H_2^{+1}Si^{+4}O_3^{-2}$
- Фосфорная $H_3^{+1}P^{+5}O_4^{-2}$

- $N_2^{+5}O_5$
- $N_2^{+3}O_3$
- \bullet S⁺⁶O₃
- \bullet S⁺⁴O₂
- C+4O₂
- Si⁺⁴O₂
- $P_2^{+5}O_5$

По формулам кислот можно определить заряд иона кислотного остатка, который всегда отрицательный и равен числу атомов водорода в кислоте.

Основность кислоты

- Число атомов водорода в кислоте характеризует основность кислоты.
- Одноосновные кислоты кислоты с одним атомом водорода, заряд иона кислотного остатка которых равен 1—.

Азотная кислота $H(NO_3)^-$.

Азотистая кислота $H(NO_2)^-$.

Хлороводородная кислота H(Cl)-.

Фтороводородная кислота $H(F)^{-}$.

Бромоводородная кислотаН(Br)-.

Иодоводородная кислота H(I)-.

Основность кислоты

- Двухосновные кислоты кислоты с двумя атомами водорода, заряд иона кислотного остатка которых равен 2—.
- Серная кислота $H_2(SO_4)^{2-}$
- Сернистая кислота $H_2(SO_3)^{2-}$
- Угольная кислота $H_2(CO_3)^{2-}$
- Кремниевая кислота $H_2(SiO_3)^{2-}$
- Сероводородная кислота $H_2(S)^{2-}$

Основность кислоты

Трехосновные кислоты – кислоты с тремя атомами водорода, заряд иона кислотного остатка которых равен 3—

Фосфорная кислота $H_3(PO_4)^{3-}$

В водных растворах <u>бескислородные кислоты</u> образуют <u>простые ионы</u> (например, Cl^- , S^{2-}), а <u>кислородсодержащие кислоты сложные ионы</u> (например, $SO_4^{\ 2-}$, NO^{3-})

Свойства кислот

- Хорошо растворимы в воде, кроме кремниевой
- Кислые на вкус (пробовать нельзя!!! опасно для жизни!!!)
- Органические и неорганические (учебник)

Техника безопасности

- При попадании кислоты на кожу или одежду немедленно сообщить педагогу
- Промыть участок кожи проточной водой
- Обработать пораженное место раствором питьевой соды
- При разбавлении кислоты водой, образуется много тепла и кислота разбрызгивается, поэтому наливать можно кислоту в воду тонкой струйкой по стеклянной палочке

Окраска индикаторов

 Окраску индикатору придают ионы растворенные в воде, <u>нерастворимые кислоты и</u> <u>основания не окрашивают индикаторы</u>!

Индикаторы –	Окраска индикатора в среде		
	Кислой	Нейтральной	Щелочной
Лакмус	Красный	Фиолетовый	Синий
Метилоранж	Красный	Оранжевый	Желтый
Фенолфталенн			Малиновый

Выводы

- 1. Кислоты сложные соединения, в состав которых входятатомы водорода и кислотный остаток.
- 2. По составу кислоты делятся на кислородсодержащие и бескислородные.
- 3. По основности кислоты делятся на одноосновные, двухосновные и трехосновные.
- 4. Кислоты по происхождению бывают органическими и неорганическими и имеют огромное значение в природе и жизни человека.
- 5. В растворах кислот кислотная среда, которая определяется индикаторами.
- 6. При работе с кислотами следует соблюдать правила ТБ и ОТ.

СПАСИБО ЗА ВНИМАНИЕ!

ДОМАШНЕЕ ЗАДАНИЕ! ПАРАГРАФ 20, ФОРМУЛЫ КИСЛОТ ВЫУЧИТЬ, КЛАССИФИКАЦИИ ВЫУЧИТЬ, ЗНАТЬ, КАК ОПРЕДЕЛИТЬ С.О. НЕМЕТАЛЛА В КИСЛОТНОМ ОСТАТКЕ, ЗАДАНИЕ В ПЕЧАТНОЙ ТЕТРАДИ