Предельные углеводороды

Годготовила: Макарова Ольга Владимировна

Цель урока: изучение класса органических соединений - алканов.

Задачи:

- Сформулировать знания учащихся о пространственном строении алканов.
- Дать понятия о гомологах, ознакомить с правилами составления названий орг. соединений по систематической номенклатуре углеводородов.
- Рассмотреть химические и физические свойства алканов, показать взаимосвязь между строением и свойствами.
- Познакомить с основными областями применения насыщенных углеводородов.
- Продолжить формирование умений анализировать, сравнивать, делать выводы; развить навыки культуры общения.
- Воспитывать экологически образованную личность и ответственное отношение к учебе.

ГОМОЛОГИЧЕСКИЙ РЯД АЛКАНОВ

Вспомните, какие вещества мы называем гомологами?

ГОМОЛОГИ –

это вещества со схожими строением и свойствами, но различающиеся по составу на одну или несколько групп СН₂ (гомологическая разность).

гомологический ряд алканов CnH2n+2

формула	название	агрегатное состояние при нормальных условиях	радикал (R)	название радикала	
CH ₄	метан		-СНз	метил	
C ₂ H ₆	этан	021 13		этил	
СзНв	пропан	пан -СзН7		пропил	
C4H10	бутан		-C ₄ H ₉	бутил	
C5H12	пентан		-C ₅ H ₁₁	пентил	
C6H14	гексан		-C ₆ H ₁₃	гексил	
C7H16	гептан	С5H12-С15H32 жидкости	-C ₇ H ₁₅	гептил	
C8H18	октан	C ₁₆ H ₃₄	-C8H17	октил	
C9H20	нонан	твердые	-C9H19	нонил	
C10H22	декан	гоордого	-C ₁₀ H ₂₁	децил	

Гомологический ряд

$$egin{array}{cccccc} H & H & H & H \\ H & C & C & C & C \\ H & H & H \\ H & H & H \\ \Pi & \Pi & \Pi \end{array}$$

 C_nH_{2n+2}

Алканы (предельные, насыщенные, парафины) – органические вещества, состоящие из атомов углерода и водорода, связанных между собой одинарными (сигма) связями.

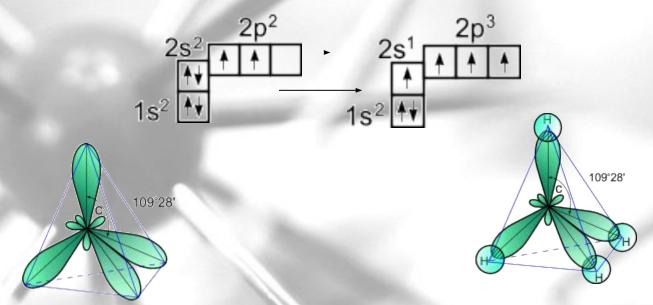
<u>АЛКАНЫ</u>

название предельных углеводородов по международной номенклатуре (ИЮПАК).

<u>ПАРАФИНЫ</u>

исторически сохранившееся название предельных углеводородов (от лат. parrum affinis – малоактивный).

Строение молекулы метана



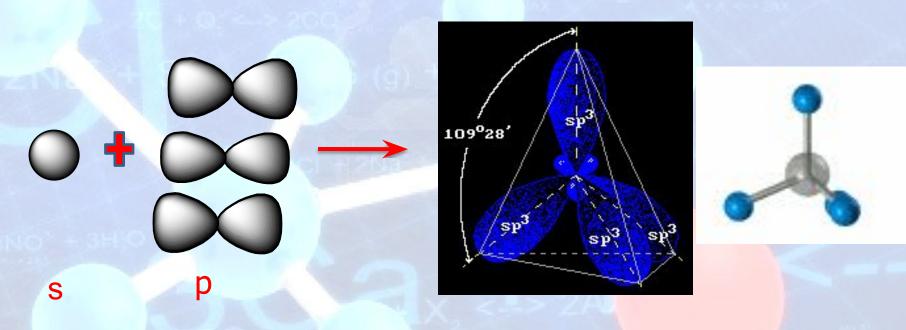

Рис.1 Модель sp³- гибридного состояния электронной оболочки атома углерода.

Рис.2 Схема электронного строения молекулы метана

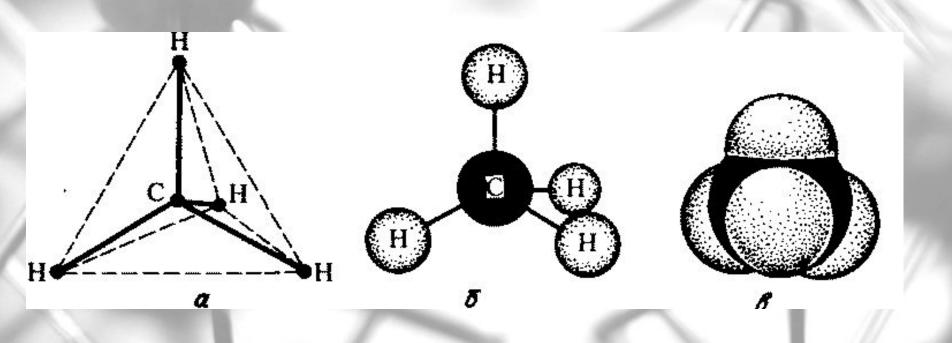
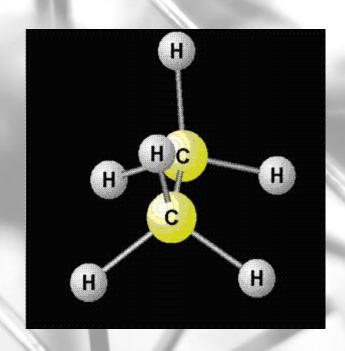
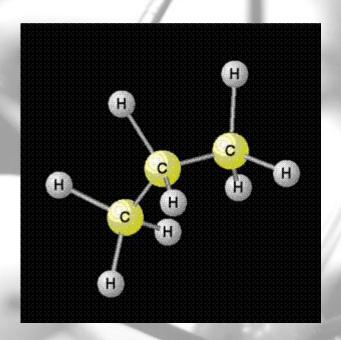
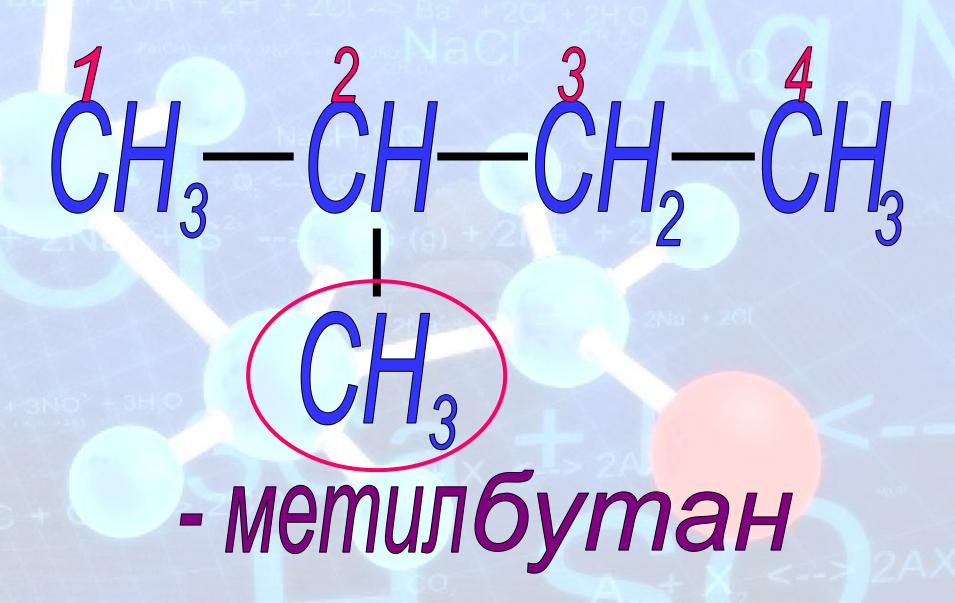

 Если область перекрывания орбиталей находится на прямой соединяющей ядра двух взаимодействующих атомов, то такая связь называется <u>G-связью</u>.

Схема образования sp-гибридных орбиталей.


• В гибридизации участвуют орбитали одного s и трех p-электронов:



Пространственные модели молекулы метана.


Шаростержневые модели этана и пропана

Название предельных углеводородов

Название предельных углеводородов

3 - метил гексан

CH₃ CH₂ CH₂ CH₃ CH₃

Изомеры - это вещества имеющие

одинаковый качественный и

количественный состав,

но отличаются по своему строению и свойствам.

Изомеры

н - пентан

2 - метилбутан

2,2 - диметилпропан

CH₃ -CH -CH₃
CH₃

Физические Свойства

C1 -C4 - газы, C5 - C15 - жидкости, C16 - ... - твердые вещества.

Нерастворимы в воде, в органических растворителях растворяются.

Нахождение в природе:

- Природный газ на 75%-85% состоит из метана, от 25%-2% этана, пропана и других соединений.
- Нефть и ископаемый уголь (содержат не чистые углеводороды)
- Месторождения угля (бурого), нефти, газа на Дальнем Востоке

ФИЗИЧЕСКИЕ СВОЙСТВА АЛКАНОВ. НАХОЖДЕНИЕ В ПРИРОДЕ.

МЕТАН – газ, без цвета и запаха, почти в 2 раза легче воздуха, мало растворим в воде. Он образуется в природе в результате разложения без доступа воздуха остатков растительных и животных организмов. Поэтому может быть обнаружен в заболоченных водоемах, где появляется в виде пузырьков газа, или накапливается в каменноугольных шахтах, куда выделяется из угольных пластов. В значительном количестве (80-97%) метан содержится в природном газе и в попутных нефтяных газах.

НАХОЖДЕНИЕ АЛКАНОВ В ПРИРОДЕ.

МЕТАН образуется в природе в результате разложения без доступа воздуха остатков растительных и животных организмов.
 Поэтому может быть обнаружен в заболоченных водоемах, где появляется в виде пузырьков газа, или накапливается в каменноугольных шахтах, куда выделяется из угольных пластов. В значительном количестве (80–97 %) метан содержится в природном газе и в попутных нефтяных газах. В космосе метан является основной частью атмосфер многих планет например Сатурна

ЭТАН, ПРОПАН И БУТАН входят в состав природного и попутного нефтяного газов.

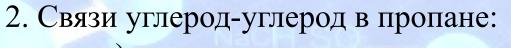
жидки**Е** АЛКАНЫ содержатся в нефти.

JANBATCAL BARREN

Какие птицы (помогали шахтёрам?

Канарейки очень чувствительны к содержанию в воздухе метана. Эту особенность использовали в своё время шахтёры, которые, спускаясь под землю, брали с собой клетку с канарейкой. Если пения давно не было слышно, значит, следовало подниматься наверх как можно быстрее.

Как алканы влияют на климат?


Метан считается одним из парниковых газов и остается предметом активных обсуждений и исследований в связи с проблемами глобального изменения климата.

Тест по теме «Алканы» Готовимся к ОГЭ!

1.Гомологический ряд алканов описывается общей формулой:

- a) $C_n H_{2n-2}$ 6) $C_n H_{2n}$ B) $C_n H_{2n+2}$ $C_n H_{2n+1}$

- а) одинарные
- б) двойные
- в) полуторные
- г) π-связи

3. Молекула метана имеет форму:

а) квадрата

- б) параллелепипеда
- в) тетраэдра
- г) конуса

4. Для алканов характерен тип гибридизации:

- a) sp
 б) sp²
 в) sp⁴
 г) sp³

5. Угол между связями атомов углерода с другими атомами в алканах составляет:

- a) 120
- б) 90°
- в) 109°
- г) 100°

- 6. Установите порядок определения названия углеводорода:
- а) определяют местонахождение радикалов
- б) выбирают самую длинную цепь и нумеруют атомы углерода в ней
- в) определяют корень названия по числу атомов углерода в длинной цепи
- г) составляют приставку в виде цифр, греческих числительных, названий радикалов

7. Установите соответствие.

Название Формула

- 1. Пропан a) CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃
- 2. Пентан б) CH₃-CH₂-CH₃
- 3. Бутан в) CH₃-CH₂-CH₂-CH₃
- 4. Октан г) CH₃-CH₂-CH₂-CH₂-CH₃

8. Среди приведённых ниже формул найдите два изомера:

- a) CH₃-CH₂-CH₂-CH₂-CH₃
- б) CH_3 - CH_2 - CH_2 - CH_3 в) CH_3 -CH- CH_2 - CH_3 CH₃

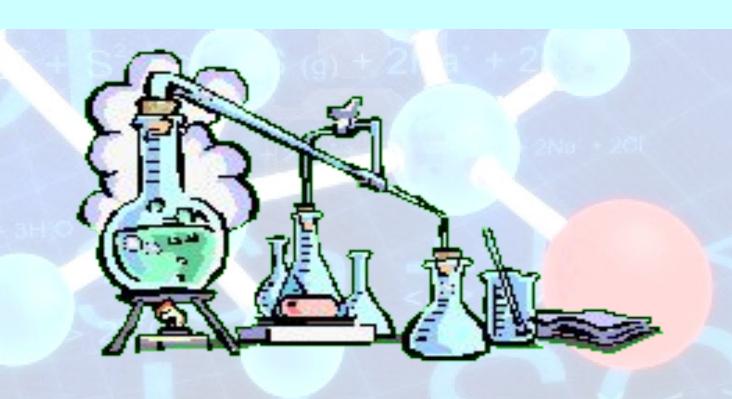
9. Только формулы алканов записаны в ряду:

- а) С₃H₆, С₂H₄, С₆H₁₄
 б) С₄H₁₀, С₂H₆, С₃H₈
- B) C_2H_2 , C_3H_8 , C_6H_6
- Γ) $C_{6}H_{6}$, $C_{4}H_{8}$, $C_{2}H_{6}$

Взаимопроверка Правильные ответы

номер задания	1	2	3	4	5	6	7	80	9
ответ	B	a	В	L	В	б,а, г,в	1-б, 2-г, 3-в, 4-а	а,в	б

Рефлексия



Прием «Гора успеха!»

Произведи самооценку и определи свое положение на «Горе успеха»

Химические свойства алканов

Проблемный вопрос: Почему алканы считают малоактивными веществами?

Запомни!

Предельные углеводороды
не вступают в реакции присоединения.
Для них характерны реакции
замещения, окисления и разложения.
Алканы не обесцвечивают раствор
перманганата калия и бромную воду.

Химические Свойства

1. Реакция горения.

Химические Свойства

2. Реакция замещения.

3. Изомеризация

Под влиянием катализаторов при нагревании углеводороды нормального строения подвергаются изомеризации - перестройке углеродного скелета с образованием алканов разветвленного строения.

CH₃-CH₂-CH₂-CH₃ AlCl₃ CH₃-CH-CH₃ CH₃

п-бутан

2-метил пропан

4. Реакции разложения

При увеличении температуры можно достичь такой степени протекания реакции, при которой органические вещества — углеводороды — полностью разлагаются на углерод и водород. Такой процесс называется пиролизом.

$$CH_4 \longrightarrow C+2H_2$$

4. Реакции разложения

$$2CH_4 \xrightarrow{800 \, ^{\circ}C, \, Mn} CH_2 = CH_2 + 2H_2;$$
 этилен $2CH_4 \xrightarrow{1000 \, ^{\circ}C} HC = CH + 3H_2;$ ацетилен $CH_4 \xrightarrow{1200 \, ^{\circ}C} C + 2H_2.$

Проверь себя

- 1. Общая формула Анлканов?
- 2. Назовите гомологи пентана.
- 3. Что такое Изомерия?
- 4. Назовите физические свойства метана.
- 5. Напишите структурную формулу октана.

Спасибо за работу на уроке!