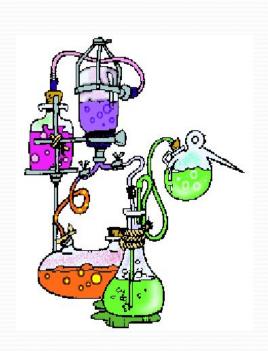


Гидролиз солей 11 класс

Учитель биологии и химии Бородина О.В.

Цели урока:

- 1) Образовательные: сформировать у учащихся понятие о гидролизе солей, научить составлять уравнения реакций гидролиза различных солей. Углубить знания учащихся об обратимых химических реакциях. Закрепить практические навыки определения среды раствора. Совершенствовать умения в работе с тестовыми заданиями разных типов.
- 2) Развивающие: развивать у учащихся умения сравнивать и анализировать теоретические сведения, применять их на практике, делать выводы; выделять главное в процессе демонстрации опыта, развивать логическое мышление.
- 3) Воспитательные: формировать материалистическое представление об окружающем мире, воспитывать осознанное представление о химии как производительной силе общества, воспитывать чувство ответственности за сохранение окружающей среды.


Задачи:

- Совершенствовать умение работать с учебным материалом, научить составлять уравнения гидролиза в молекулярном и ионном виде.
- Сравнивать состав и свойства солей, прогнозировать реакцию среды раствора соли на основе анализа её состава, уметь строить аналогию и самостоятельно делать выводы по результатам проведенных опытов.
- Сформировать понимание практического значения гидролиза в природе и жизни человека.

«Повторение основных важнейших опорных

знаний»

- Дать определения :
- -ЭЛЕКТРОЛИТЫ
- НЕЭЛЕКТРОЛИТЫ
- -Электролитическая диссоциация
- Определение солей в свете теории электролитической диссоциации.

Изучение нового материала

- Гидролиз солей это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита.
- Гидролиз в переводе с греческого « разложение водой»
- Процесс гидролиза может быть обратимым и необратимым

Запомни!

 К обратимому гидролизу относится гидролиз солей, в которых есть « сильный» компонент, к необратимым - нет

• « сильного» компонента.

4 ТИПА СОЛЕЙ:

- соль, образованная сильной кислотой и слабым основанием (ALCI3);
- сильным основанием и слабой кислотой (Na2 S);
- сильным основанием и сильной кислотой (NaCI);
- слабым основанием и слабой кислотой (CH3COONH4).

1). Гидролиз не возможен

- Соль, образованная сильным основанием и сильной кислотой (КВг, NaCl, NaNO₃), гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется.
- рН таких растворов = 7. Реакция среды остается нейтральной.

2). Гидролиз по катиону (в реакцию с водой вступает только катион)

- В соли, образованной слабым основанием и сильной кислотой (FeCl₂, NH₄Cl, Al₂(SO₄)₃,MgSO₄) гидролизу подвергается катион:
- FeCl₂ + HOH <=>Fe(OH)Cl + HCl Fe²⁺ + 2Cl⁻ + H⁺ + OH⁻ <=> FeOH⁺ + 2Cl⁻ + H⁺
- В результате гидролиза образуется слабый электролит, ион Н⁺ и другие ионы.
- pH раствора < 7 (раствор приобретает кислую реакцию).

3). Гидролиз по аниону (в реакцию с водой вступает только анион)

- Соль, образованная сильным основанием и слабой кислотой (КСІО, К₂SiO₃, Na₂CO₃, CH₃COONa) подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид ион и другие ионы.
- $K_2SiO_3 + HOH => KHSiO_3 + KOH$ $2K^+ + SiO_3^{2-} + H^+ + OH^- => HSiO_3^- + 2K^+ + OH^-$
- рН таких растворов > 7 (раствор приобретает щелочную реакцию).

ВЫВОД

- По аниону соли, как правило, гидролизуются обратимо;
- Химическое равновесие смещено влево;
- Реакция среды щелочная (рН7)
- При гидролизе солей , образованных слабыми многоосновными кислотами , получаются кислые соли.

Сель, образованная <mark>слабым</mark> основанием и слабой кислотой (**CH₃COONH₄, (NH₄)₂CO₃, AI₂S₃)**, гидролизуется и по катиону, и по аниону.

- В результате образуется малодиссоциирующие основание и кислота рН растворов таких солей зависит от относительной силы кислоты и основания Мерой силы кислоты и основания и основания является константа диссоциации соответствующего реактива
- Реакция среды этих растворов может быть нейтральной, слабокислой или слабощелочной:

Прежде всего, разберем, какие кислоты и основания относятся к сильным и слабым. Рассмотрим таблицу.

сильн <u>ы</u> Е					
кислоты	основания				
H ₂ SO ₄ HCI HCIO ₄ HMnO ₄	LiOH Ca(OH) ₂				
HNO ₃ HBr HCIO ₃	NaOH Sr(OH) ₂				
HI	KOH Ba(OH) ₂				
	RbOH				
	CsOH				
СЛА	БЫЕ				
H ₂ SO ₃ HF H ₂ CO ₃ HCIO	Нерастворимые				
HNO ₂ H ₂ S H ₂ SiO ₃ HClO ₂	гидроксиды (все):				
H ₃ PO ₄ HCOOH	Cu(OH) ₂ Mg(OH) ₂ Al(OH) ₃				
CH₃COOH	Fe(OH) ₂ Be(OH) ₂ Fe(OH) ₃				
C ₂ H ₅ COOH	NH₄OH				

РАСТВОРИМОСТЬ КИСЛОТ, ОСНОВАНИЙ, СОЛЕЙ В ВОДЕ И ЦВЕТ ОСАДКА

							2000	1000	1000				10071			лиз			_			y.			
											B	ATE	ЮНЕ	I LH	дро	кси,	цов	(OCI	HOB/	THR	(B)				
		сильных					СЛАБЫХ					AM	ФОТ	ЕРН	dХ		СЛАБО вифо- тервых								
			но	ны	н.	iz	*eZ	Ė.	Ba2+	Ca2+	NH.	Mg2*	Fe2+	Nis	Mn^{2+}	Agt	Hg^{2+}	ΛI^{3+}	ż	Be2+	Zn^{2+}	Pb2+	Sn^{2+}	Fe3+	400
		OH-		гидроксид		p	p	p	р	M	p†	Бл	Вл	3	Ва	-	-	Бл	Ca	Бл	Бл	Бл	Бл	Бр	C
Г	T	NO ₃		нитрат	p	p	p	p	P	р	p	p	p	р	p	p	p	p	p	p	р	p	Гд	p	p
1	N. C.	SO2-		сульфат	p	.p	p	p	Вл	M	p	p	p	p	p	М	H_{L}	p	p	p	p	Бл	p	p	p
5		Г		иодид	p	p	p	p	р	p	р	p	p	p	p	ж	К	p	M	p	p	Ж	0ĸ	-	-
WIND THOM	Course of	Br-		бромид	p	p	p	p	p	p	p	P	p	p	p	Bac	M	p	p	p	p	But	Γд	p	p
Jan.	1	CI		хлорид	p	P	p	p	р	p	p	.p	p	p.	p	Ва	p	p	p	p	р	Бл	p	p	p
٦.		SO3-		сульфит	p↑	p	p	p	Ва	Вл	p	M	Ca	3	Вл	Вл	-	Гд	Гд	Гд	Ва	Бл	-	-	H
HINNEY		PO4		ортофосфат	p	p	p	Вл	Ba	Вл	p	Ba	Вл	3	Вл	ж	Вл	Бл	3	Вπ	Бл	Бл	Бл	Bac	T)
1 5		CH ₃ C	00-	ацетат	p	p	p	p	p	p	p	P	p	p	p	M	p	$\Gamma_{\!/\!\!\!\!\!/}$	p	$H_{\rm L}$	p	p	Гд	-	p
	CHADLIN	-co#-		карбоват	p↑	p	p	M	Ва	Вл	p	Вл	Вл	H^{Γ}	Бл	Бж	$H_{\rm L}$	Гд	Гд	Hr	H^{r}	H_L	Гд	Гд	H
	15	S2-		сульфид	p↑	p	p	р	p	p	p	M	ч	Ч	T	Ч	ч	Гд	Гд	Гд	Бл	Ч	Бр	-	Ч
HO ARMORA		SiO3-		метасилинсат	Ba	p	p	Вл	Ба	Вл	-	Бл	Cp	Гд	T	-	-	Гд	Гд	Гд	Pa	Бл	Гд	Гд	H

ОКРАСКА ИНЛИКАТОРОВ В РАЗЛИЧНЫХ СРЕДАХ

	среда						
шидикатор	кислотная	нейтральная	щелочная				
лизмус	красный	фиолетовый	синий				
фенолфталени	беспретный	бесцветный	малиновый				
метилораны	красный	оранжевый	желтый				

р – растворимые; р ↑ – летучие или распадаются с выделением газа; М – малорастворимые; Н – осадок основной соли вследствие гидролиза; Гд – соль разлагается водой; черточка (-) – вещество не существует. Цвета осадков: Бл – белый, Бж – бледно-желтый, Бр – бурый, Гл – голубой, Ж – желтный, З – зеленый, К – красный, Ок – оранжево-красный, Рз – розовый, С – синий, Сз – серовато-зеленый, Ср – серый, Т – телесный, Ч – черный.

H2SO2	H ₃ PO ₄	HF	HNO ₂	CH2C	OOH H	CO ₃	H ₂ S	H ₃ BO ₅	HCN	H ₂ SiO ₃
		→ C1	ила кислот о	слабевает, г	идролиз соле	й по анио	пу усиливае	этся —		-
Ni2+	Mn ²⁺	NH4	Co2+	Zn ²⁺	Cu ²⁺	Fe ²⁺	Pb2*	Al3+	Cr3+	Fe3*

	Сильная кислота, слабое основание	Слабая кислота, сильное основание	Слабая кислота, слабое основание	Сильная кислота, сильное основание				
Направление гидролиза	По катиону	По аниону	По катиону и по аниону	Гидролиз не идет				
Характер среды	Кислая	Щелочная	Близкая к нейтральной	Нейтральная				
Продукты реакции	Кислота и основная соль	Основание и кислая соль	Довольно разнообразны	-				

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

ОКИСЛИТЕЛЬНАЯ СПОСОБНОСТЬ УВЕЛИЧИВАЕТСЯ

Li K Ca Na Ba Mg Al Zn Fe Ni Sn Pb H Cu Hg Ag Pt Au

ВОССТАНОВИТЕЛЬНАЯ СПОСОБНОСТЬ УВЕЛИЧИВАЕТСЯ

ОКРАСКА ИНДИКАТОРОВ В РАЗЛИЧНЫХ СРЕДАК

	шет индикатора в среде								
Индикаторы	нейтральная [H*]=[OH]	нислая Н°	щелочная ОН						
Лакиус	Beconticolar	Mond	Cressed						
Фенолфтолеин	вошеный	меценый	MANAGONA						
Метилоронж	Obstation	POSOSAR	жилы						

ГИДРОЛИЗ ВОДНЫХ РАСТВОРОВ СОЛЕЙ

Na,CO,

≥ 2Na*+ CO; HOH ₹ H'+ OH COT + HOH Z OH + HCOT Na,CO, + HOH

NaOH + NaHCO,

[OH_] > [H,] **ЩЕЛОЧНАЯ** СРЕДА

AICI, AI3"+3CI Al"+3Cl"+HOH

AlOH"+3Cl"+H' Al3"+HOH Z AIOH2"+H" AICI, + HOH

AI(OH)CI, + HCI

 $[OH_{-}] < [H_{+}]$ КИСЛАЯ СРЕДА

NaCl

Na'+Cl Na'+CI+HOH

Na'+CI+H,O

 $[OH_{-}] = [H_{+}]$ **НЕЙТРАЛЬНАЯ** СРЕДА

Шкала значений рН и окраска некоторых индикаторов [H'] = [OH]КИСЛОТА [H⁺] > [OH⁻] OCHOBAHUE [H'] < [OH'] [H'] = 10-7 10 11 12 13 14 15 Нейтральная Увеличение [ОН] Увеличение [Н'] Лакмус Лакмус Метилоранж Метилоранж Фенолфталеин Фенолфталеин

Гидролиз многокислотных солей и многоосновных кислот проходит ступенчато

- Например, гидролиз хлорида железа (II) включает две ступени:
- 1-ая ступень $FeCl_2 + HOH => Fe(OH)Cl + HCl$ $Fe_2^+ + 2Cl^- + H^+ + OH^- => Fe(OH)^+ + 2Cl^- + H^+$

Гидролиз карбоната натрия включает две ступени:

- 1-ая ступень Na₂CO₃ + HOH =>NaHCO₃ + NaOH CO₃²⁻ + 2Na⁺ + H⁺ + OH⁻ =>HCO₃⁻ + OH⁻ + 2Na⁺
- **2-ая ступень** NaHCO₃ + H₂O =>NaOH + H₂CO₃ HCO₃ + Na⁺ + H⁺ + OH⁻ =>H₂CO₃ + OH⁻ + Na⁺

Алгоритм составления уравнений гидролиза солей

Ход рассуждений

1. Определяем силу электролита – основания и кислоты, которыми образована рассматриваемая соль.

Помните! Гидролиз всегда протекает по слабому электролиту, сильный электролит находится в растворе в виде ионов, которые не связываются водой.

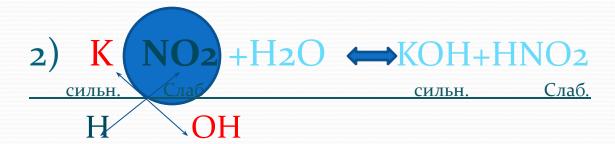
Пример

Кислота	
<u>Слабые</u> - CH ₃ COOH,H ₂ CO ₃ ,H ₂ S, HClO,	Сл
HCIO,	OCI
<u>Средней силы</u> - Н ₃ РО ₄	Cu
<u>Сильные</u> - HCl, HBr, Hl, HNO ₃ , HClO ₄ ,	
H_2SO_4	

<u>Слабые</u> – все нерастворимые в воде основания и NH₄OH <u>Сильные</u> – щёлочи (искл. NH₄OH)

Основания

 Na_2CO_3 — карбонат натрия, соль образованная сильным основанием (NaOH) и слабой кислотой (H_2CO_3)


2. Записываем диссоциацию соли в водном растворе, определяем ион слабого электролита, входящий в состав соли:	$2Na^+ + CO_3^{2-} + H^+OH^- \leftrightarrow$ Это гидролиз по аниону От слабого электролита в соли присутствует анион CO_3^{2-} , он будет связываться молекулами воды в слабый электролит — происходит гидролиз по аниону.
3. Записываем полное ионное уравнение гидролиза – ион слабого электролита связывается молекулами воды	$2Na^{+}$ + $CO_{3}^{2^{-}}$ + $H^{+}OH^{-}$ ↔ $(HCO_{3})^{-}$ + $2Na^{+}$ + OH^{-} В продуктах реакции присутствуют ионы OH^{-} , следовательно, среда щелочная $pH>7$

4. Записываем молекулярное гидролиза
$$Na_2CO_3 + HOH \leftrightarrow NaHCO_3 + NaOH$$

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Определите среду водных растворов (pH) и тип гидролиза:

Среду определяем по принципу силы (кто сильнее) Среда щелочная

Задание 3

слаб. сильн слаб

> Среда по принципу силы КИСЛАЯ

СИЛЬН

Задания

- 4. Соль NaNO, образована сильной кислотой (HNO) и сильным основанием (NaOH). Гидролиз не идет, новых соединений не образуется, кислотность среды не изменяется.
- 5. Соль NiSO образована сильной кислотой (H SO) и слабым основанием (Ni(OH)). Идет гидролиз по катиону, в ходе реакции образуются кислота и основная соль.
- <u>6</u>. Карбонат калия образован слабой кислотой (H₂CO₃) и сильным основанием (KOH). Гидролиз по аниону, образование щелочи и кислой соли. Щелочная среда раствора.
- 7. Сульфид алюминия образован слабой кислотой (H₂S) и слабым основанием (Al(OH)₃). Идет гидролиз как по катиону, так и по аниону. Необратимая реакция. В ходе процесса образуются H₂S и гидроксид алюминия. Кислотность среды меняется в незначительной степени.

Задание 8

Сравните реакцию среды в растворах солей, не проводя вычислений: а) Na₂SO₄; б) Na₂SO₃; в) Na₂CO₃.

Решение

а) Соль Na₂SO₄ – сульфат натрия, образована сильной кислотой (серной – H₂SO₄) и сильным основанием (гидроксидом натрия – NaOH). Гидролизу подвергаются соли, содержащие слабый ион. Поскольку в этом соединении его нет, гидролиза не происходит и среда будет нейтральная.

решение

б) Соль Na₂SO₃ – сульфат натрия, образована слабой кислотой (сернистой – H₂SO₃) и сильным основанием (гидроксидом натрия – NaOH). Гидролизу подвергаются соли, содержащие слабый ион. В этом соединении им является сульфитанион, следовательно, среда будет щелочная.

решение

в) Соль Na₂CO₃ – сульфат натрия, образована слабой кислотой (угольной – H₂CO₃) и сильным основанием (гидроксидом натрия – NaOH). Гидролизу подвергаются соли, содержащие слабый ион. В этом соединении им является карбонатанион, следовательно, среда будет щелочная.

Задание

Напишите уравнение гидролиза соли $(NH_4)_2SO_4$, укажите реакцию среды в растворе.

Решение

Сначала запишем уравнения диссоциации соли и воды:(NH) SO
$$\leftrightarrow$$
 2NH $^+$ + SO $_4^{^{2-}}$. $H_2O \overset{4}{\leftrightarrow} H^+$ + OH $^{-4}$.

Выясним слабый ион. Сульфат натрия – соль, образованная сильной кислотой – серной (H SO) и слабым основанием – гидроксидом аммония (NH OH). Следовательно, протекает гидролиз по катиону:

$$2NH_{4}^{+} + SO_{2}^{2-} + 2H_{4}^{+} + 2OH_{4}^{-} \leftrightarrow 2NH_{4}OH + H_{2}SO_{4}.$$

$$(NH_{4})_{2}^{4}SO_{4} + 2H_{2}O \leftrightarrow 2NH_{4}OH + H_{2}SO_{4}.$$

Наличие в растворе ионов водорода свидетельствует о том, что среда кислая.

Установите соответствие между формулой соли и отношением её к гидролизу.

Формула соли	Отношение к гидролизу
A. A) CaCO3	1)Гидролиз по катиону
Б. Б)СsNO2	2. гидролиз по аниону
B. CrCl3	3. гидролиз и по катиону и по аниону
Г. Mg(HCOO) ₂	4. гидролиз не идёт
Ответ	4213

Задание

Какие из солей подвергаются гидролизу: КСl, К2S, ZnCl2, Pb(NO3)2, Ca3(PO4)2, LiNO2, CsSiO3, AlBr3, Na2SO4?(Как вы это определили?)(красным самостоятельно)

Запишите уравнения реакций гидролиза в ионном и молекулярном виде . Укажите среду растворов и окраску лакмусов в них

Решение

№ С соль сильного основания - КОН, и сильной кислоты - НС1 - гидролизу не подвергается.

K2S- соль сильного основания - KOH, и слабой кислоты –H2S Гидролиз пойдет по аниону -

1 – ступень

 S^{2-}

 Гидроксид - анионы говорят нам о том, что среда щелочная - лакмус синий

щелочная - лакмус синий
$$S = HS + OH = S$$

Молекулярный Вид:

$$K_2S + H_2O \rightarrow KHS + KOH$$

$$HS^- + H^+OH^- = H_2S + OH^-$$

- снова щелочная среда, лакмус - синий Молекулярный вид:

$$KHS + H_2O \rightarrow H_2S + KOH$$

- Урок я усвоил на :
- Я знаю
- Я умею
- Мне было интересно
- Вызвало трудности

Домашнее задание

Параграф 21 стр.93

Задача 1. Составьте молекулярные и ионные уравнения гидролиза солей Li₃PO₄, KCl, CuCl₂. Какое значение pH (pH ≥7, pH ≤ 7) имеют

растворы этих солей?

Решение

- Li₃PO₄ соль, образованная сильным основанием и слабой кислотой, гидролиз по аниону
- $Li_3PO_4 \leftrightarrow 3Li^+ + PO_4^{3-}$
- І ступень PO_4^{3-} + HOH = HPO_4^{2-} + OH⁻, **pH** > **7**
- $\text{Li}_{3}\text{PO}_{4} + \text{HOH} = \text{Li}_{2}\text{HPO}_{4} + \text{LiOH}$
- II ступень $HPO_4^{2-} + HOH = H_2PO_4^{--} + OH^{--}, pH > 7$
- $\text{Li}_{2}\text{HPO}_{4}$ + $\text{HOH} = \text{LiH}_{2}\text{PO}_{4}$ + LiOH
- III ступень $H_2PO_4^- + HOH = H_3PO_4^- + OH^-, pH > 7$
- $LiH_2PO_4 + HOH = H_3PO_4 + LiOH$

Решение

- КСІ соль, образованная сильным основанием и сильной кислотой, гидролизу не подвергается, рН ≈
 7
- CuCl₂ соль, образованная слабым основанием и сильной кислотой, гидролиз по катиону
- $CuCl_2 \leftrightarrow Cu^{2+} + 2Cl^{-}$
- I ступень Cu^{2+} + HOH \leftrightarrow (CuOH)⁺ + H⁺, **pH**<7
- $CuCl_2 + HOH \leftrightarrow (CuOH)Cl + HCl$
- II ступень(CuOH)⁺ + HOH ↔ Cu(OH)₂ + H⁺, **pH**<**7**
- (CuOH)Cl + HOH↔ Cu(OH)₂ + HCl

Молодцы!

пасибо за урок!

