Бериллий, магний и Щелочноземельные металлы

Учитель химии и биологии Абовян Г.М. МБОУ Свердловская СОШ им. М.П. Марченко

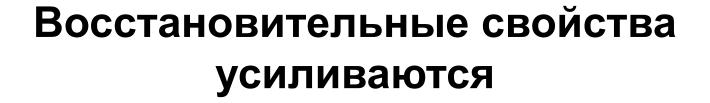
Цели:

- Обобщить и систематизировать знания о щелочноземельных металлах
- Уметь характеризовать элементы по положению в периодической таблице
- Знать физические и химические свойства
- ✓ применение соединений щелочноземельных металлов

Положение в периодической таблице.

- В периодической системе находятся в главной подгруппе II группы.
- Являются сильными восстановителями, отдают 2 ē, во всех соединениях проявляют степень окисления +2.
- Общая конфигурация внешнего энергетического уровня nS²

Mg +12 2ē, 8ē, 2ē

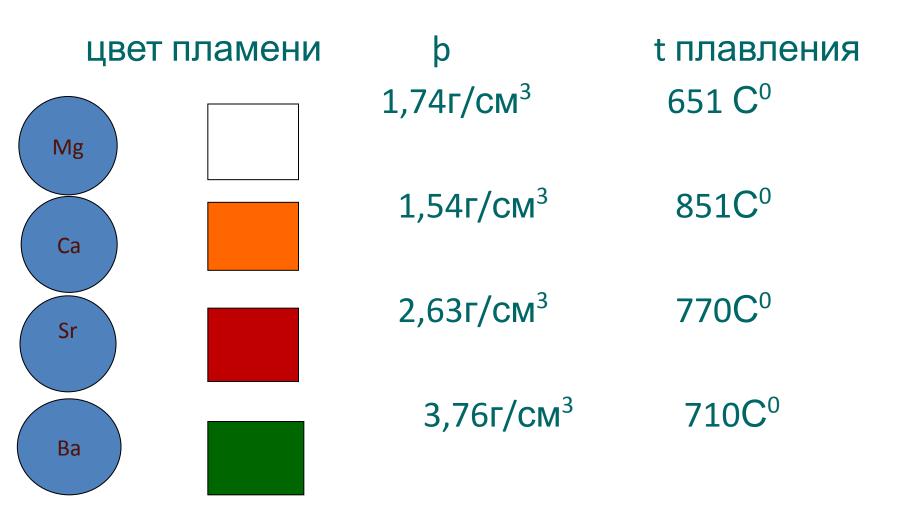

Ca +20 2ē, 8ē, 8ē, 2ē

Sr +38 2ē, 8ē, 18 ē, 8ē, 2ē

Ba +56 2ē, 8ē, 18 ē, 18 ē, 8ē, 2ē

Положение в периодической таблице

Be Mg Ca Sr Ba Ra


Строение атома

Be
$$+4$$
)) sr $+38$))))
Mg $+12$))) Ba $+56$)))))

Физические свойства щелочноземельных металлов.

Вели чины	Ве	Mg	Ca	Sr	Ва	Ra
Р г/см	1,85	1,737	1,54	2,63	3,6	6
Тпл.° по С	1287	648	842	768	727	969

Физические свойства

Нахождение в природе

Бериллий: 3BeO • AlO3 • 6SiO2 — берилл

Магний: MgCO3 – магнезит

KCI • MgSO₄ • 3H2O – каинит

KCI • MgCI2 • 6H2O – карналлит

Кальций: CaCO3 • MgCO3 – доломит

СаСОЗ – кабонат(известняк, мрамор, мел.)

Са3(РО4)2 – апатит, фосфат кальция

CaSO4 • 2H2O - гипс

2CaSO4. H2O-алебастр

CaF2 – плавиковый шпат (флюорит)

Стронций: SrSO4 – целестин

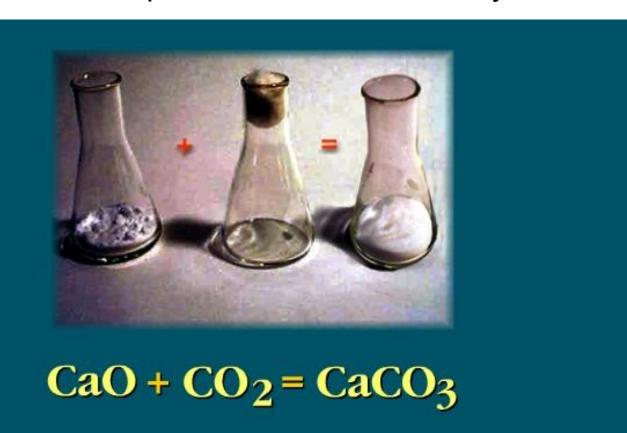
SrCO3 – стронцианит

Барий: BaSO4 – барит

ВаСО3 – витерит

Химические свойства

1. С простыми веществами(неметаллами)


$$2\text{Me}^{0} + \text{O}_{2} \longrightarrow 2\text{Me}^{+2}\text{O}^{-2} - \text{оксид}$$
 $\text{Me}^{0} + \text{H}_{2} \longrightarrow \text{Me}^{+2}\text{H}_{2} - \text{гидрид}$
 $\text{Me}^{0} + \text{Cl}_{2}^{0} \longrightarrow \text{Me}^{+2}\text{Cl}_{2} - \text{хлорид}$
 $\text{Me}^{0} + \text{S}^{0} \longrightarrow \text{Me}^{+2}\text{S}^{-2} - \text{сульфид}$

«2. Co сложными веществами

$$Me^0 + 2HCI \rightarrow Me^{+2}CI_2 + H_2$$

 $Me^0 + 2HOH \rightarrow Me^{+2}(OH)_2 + H_2$

Соединения щелочноземельных металлов

Оксиды щелочноземельных металлов –МеО, имеют основный характер, легко реагируют с оксидами неметаллов с образованием соответствующих солей.

*CaCO*₃
Карбонат кальция – одно из самых распространённых на Земле соединений. Его содержат горные породы – мел, мрамор, известняк.

$Ca_3(PO_4)_2$

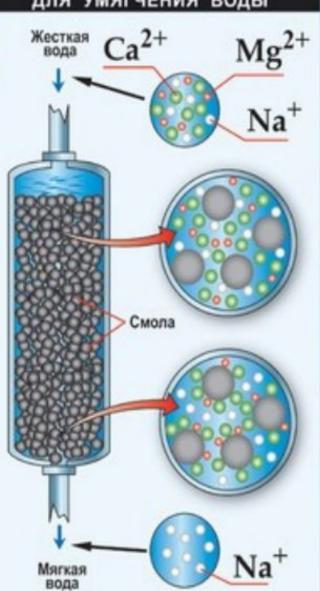
Входит в состав фосфоритов и апатитов, а также в состав костей и зубов. В организме взрослого человека содержится 1 кг Са в виде фосфата кальция.

Благодаря нерастворимости и способности задерживать рентгеновские лучи применяется в рентгенодиагностике – баритовая каша.

$CaSO_4$: $2H_2O$

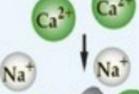
Встречается в природе в виде минерала гипса, представляющего собой кристаллогидрат. Используется в строительстве, в медицине для наложения гипсовых повязок, для получения слепков.

$MgCO_3$


Широко применяется в производстве стекла, цемента, кирпича, а также в металлургии для перевода пустой породы в шлак.

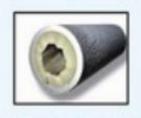
4. ЖЕСТКОСТЬ ВОДЫ

СХЕМА УСТАНОВКИ ДЛЯ УМЯГЧЕНИЯ ВОДЫ



Жесткость воды	Анионы, присутствующие в растворе	Способы устранения жесткости		
Временная	HCO ₃	 Кипячение: Ca(HCO₃)₂ [±] CaCO₃ ↓ + CO₂↑ + H₂O Добавление соды: Ca(HCO₃)₂ + Na₂CO₃ = CaCO₃↓ + 2NaHCO₃ Добавление извести: Ca(HCO₃)₂ + Ca(OH)₂ = 2CaCO₃↓ + 2H₂O 		
CI ⁻ . SO ₄ ²⁻ H ₂ PO ₄ ⁻		Добавление соды: $CaCl_2 + Na_2CO_3 = CaCO_3 \downarrow + 2NaCl;$ $6MgCl_2 + 6Na_2CO_3 + 2H_2O = Mg_5(OH)_2(CO_3)_4 \downarrow + Mg(HCO_3)_2 + 12NaCl$		

Установка для умягчения воды



НАКИПЬ

Домашнее задание:

✓ § 15. упр. № 2, 4, 5.