
ТЕОРИЯ ЭЛЕКРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

МАЙКЛ ФАРАДЕЙ (22 СЕНТЯБРЯ 1791, ЛОНДОН — 25 АВГУСТА 1867, ЛОНДОН) — АНГЛИЙСКИЙ ФИЗИК-ЭКСПЕРИМЕНТАТОР И ХИМИК. В ПЕРВОЙ ПОЛОВИНЕ 19 В. М. ФАРАДЕЙ ВВЕЛ ПОНЯТИЕ ОБ ЭЛЕКТРОЛИТАХ И НЕЭЛЕКТРОЛИТАХ.

Все вещества по отношению к электрическому току можно разделить на :

Электролиты

их растворы или расплавы ПРОВОДЯТ

электрический ток

Неэлектролиты

их растворы или расплавы

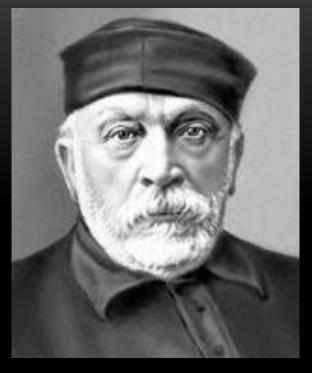
не проводят

электрический ток

Вид химической связи

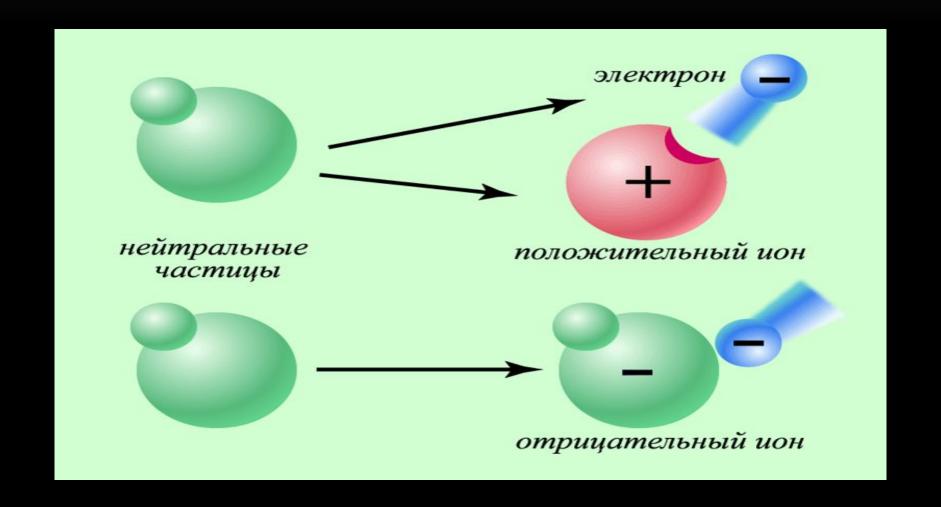
Ионная или ковалентная сильно полярная

Ковалентная неполярная или мало полярная


PPMMEPbl:

ДЛЯ ОБЪЯСНЕНИЯ ЭЛЕКТРОПРОВОДНОСТИ РАСТВОРОВ И РАСПЛАВОВ СОЛЕЙ, КИСЛОТ, ОСНОВАНИЙ ШВЕДСКИЙ УЧЕНЫЙ С. АРРЕНИУС СОЗДАЛ ТЕОРИЮ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ (1887 Г.).

ПРОЦЕСС ПОЯВЛЕНИЯ
ГИДРАТИРОВАННЫХ ИОНОВ В
ВОДНОМ РАСТВОРЕ НАЗЫВАЕТСЯ
ЭЛЕКТРОЛИТИЧЕСКОЙ
ДИССОЦИАЦИЕЙ
(С. АРРЕНИУС, 1887 Г.)



ПРЕДСТАВЛЕНИЯ О ДИССОЦИАЦИИ ЭЛЕКТРОЛИТОВ ПОЛУЧИЛИ РАЗВИТИЕ В РАБОТАХ РУССКИХ ХИМИКОВ И.А. КАБЛУКОВА И В.А. КИСТЯКОВСКОГО. ОНИ ПРИМЕНИЛИ К ОБЪЯСНЕНИЮ ПРОЦЕССА ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ ХИМИЧЕСКУЮ ТЕОРИЮ РАСТВОРОВ Д.И. МЕНДЕЛЕЕВА.

Основные положения теории ТЭД

1. Молекулы электролитов при растворении в воде или расплавлении распадаются на ионы.

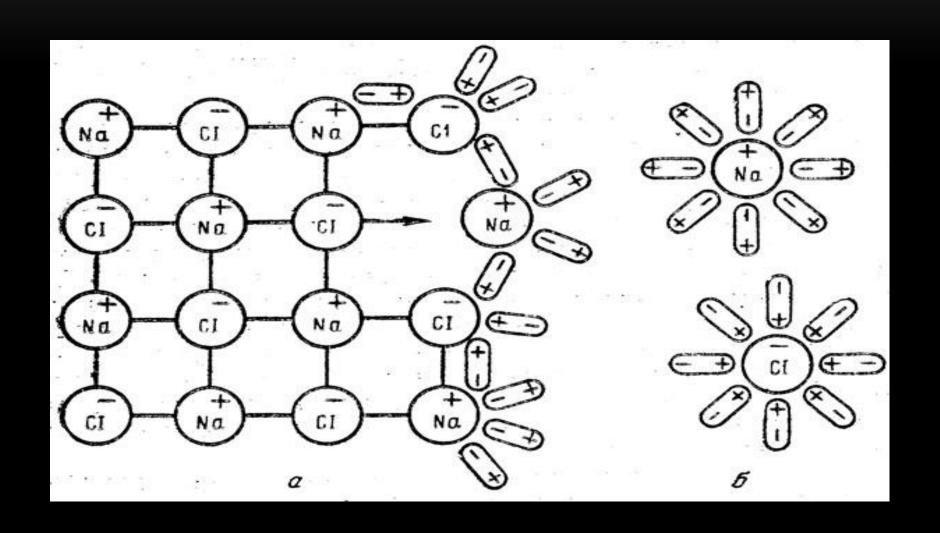
ИОНЫ (по составу)

• ПРОСТЫЕ

Например:

- · CI
- K

• СЛОЖНЫЕ


Например:

- NO₃
- SO42-

2. Причиной диссоциации электролита в водном растворе является его гидратация, т.е. взаимодействие электролита с молекулами воды и разрыв химической связи в нем.

Диссоциация – процесс обратимый. Это значит, что одновременно идут два противоположных процесса: распад молекул на ионы (диссоциация, ионизация) и соединение ионов в молекулы (ассоциация, моляризация)

МЕХАНИЗМ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

ИОНЫ (по наличию водной оболочки)

• ГИДРАТИРОВАННЫЕ

Например:

В растворах и кристаллогидратах CuSO₄ * 5H₂O

Na₂SO₄* 10H₂O

• НЕГИДРАТИРОВАННЫЕ

Например:

В безводных солях

Cu2+SO,2-

NatNO,

3. Под действием электрического тока положительно заряженные ионы движутся к отрицательному полюсу источника тока — катоду, поэтому их называют катионами, а отрицательно заряженные ионы движутся к положительному полюсу источника тока — аноду, поэтому их называют анионами.

ИОНЫ (по знаку заряда)

• КАТИОНЫ
положительно
заряженные
частицы

• АНИОН отрицательно заряженные частицы

СТЕПЕНЬ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ. СИЛЬНЫЕ И СЛАБЫЕ ЭЛЕКТРОЛИТЫ.

Степень диссоциации

$$\alpha = \frac{n}{N} \qquad \alpha\% = \frac{n}{N} \cdot 100\%$$

КЛАССИФИКАЦИЯ ЭЛЕКТРОЛИТОВ

<u>Сильные</u> электролиты

a > 30%

Электролиты средней силы

 $3\% \le \alpha \le 30\%$

<u>Слабые</u> электролиты

a < 3%

Сильные электролиты

 $\alpha > 30\%$

• Средние водорастворимые соли NaCl, K_2SO_4 , $Ba(NO_3)_2$ и т д;

- «Гидроксиды щелочных и щелочноземельных металлов: LiOH СзОН, Са(OH)₂ Ва(OH)₂;
- «Минеральные кислоты: H₂SO₄, HNO₃, HClO₃, HClO₄, HBrO₃, HJO₃, HCl, HBr, HJ

Электролиты средней силы 3% ≤ α ≤ 30%

H₃PO₃, H₃PO₄, H₄P₂O₇, H₂SO₃, HF, HCIO₂, Fe(OH)2,

Слабые электролиты

 $\alpha < 3\%$

- Органические кислоты: НСООН, СН₃СООН, С2Н5СООН
- Минеральные кислоты: HNO₂, HClO, H₂CO₃, H₂SlO₃, H₃BO₃, H₃PO₃, H₂S
- •Гидроксиды малоактивных металлов: Cu(OH)2, Fe(OH)3, Al(OH)3,

Cr (OH)3 ,

•Гидроксид аммония:

NH4OH

Классы неорганических веществ с точки зрения ТЭД

КИСЛОТЫ

Сложные вещества, молекулы которых состоят из атомов водорода, способных замещаться на атомы металлов и кислотных остатков.

Кислоты

Сильные Слабые

HCI; HBr; H2SO4 H2CO3; H2S; H2SiO3

КЛАССИФИКАЦИЯ КИСЛОТ ПО ЧИСЛУ АТОМОВ ВОДОРОДА В МОЛЕКУЛЕ:

Основность кислот

Одноосновные

HCIO₄, HNO₃, HCI, HBr

ПТрёхосновные

H₃PO₄, H₃BO₃

Овухосновные

H₂SO₄, H₂CO₃, H₂S, H₂SiO₃

Четырёхосновные

H4P2O7, H4SIO4

С точки зрения ПГЭД, кислотами называются электролиты, которые в водном растворе диссоциируют на ионы водорода и ионы кислотных остатков.

Диссоциация кислот

$$HCI = H^{\dagger} + CI^{\dagger}$$
 $HNO_3 = H^{\dagger} + NO_3^{\dagger}$
 $HCIO_4 = H^{\dagger} + CIO_4^{\dagger}$

Кислоты — это электролиты, которые диссоциируют на катионы водорода и анионы кислотного остатка.

Диссоциация многоосновных кислот

Сильный электролит

$$H_2SO_4 \leftrightarrows H^{\dagger} + HSO_4^{\dagger}\alpha_1$$
 $HSO_4^{\dagger} \leftrightarrows H^{\dagger} + SO_4^{2} \alpha_2$
 $H_2SO_4 \leftrightarrows 2H^{\dagger} + SO_4^{2}$

Многоосновные қислоты диссоциируют ступенчато. Қаждая последующая степень протекает хуже предыдущей.

ОСНОВАНИЯ

Это сложные вещества, состоящие из ионнов металлов и гидроксид-ионов

Кислотность оснований

Однокислотные

NaOH, KOH, NH₄OH **Овухкислотные**

Ca(OH)₂, Ba(OH)₂, Fe(OH)₂

ПГрёхкислотные

Fe(OH)₃, Al(OH)₃, Cr(OH)₃,

С точки зрения ПГЭД, основаниями называются электролиты, которые в водном растворе диссоциируют на ионы металла и гидроксид ионы.

Диссоциация оснований

NaOH = Na⁺ + OH⁻
Ba(OH)₂ = BaOH⁺ + OH⁻
$$\rightarrow$$
 Ba²⁺ + 2OH⁻
KOH = K⁺ + OH⁻

Основания — это электролиты, которые диссоциируют на катионы металла и анионы гидроксогрупп

СОЛИ

Сложные вещества, состоящие из ионов металлов и кислотного остатка

Классификация солей

средние

Образованы катионами металла и анионами кислотного остатка

кислые

Кроме металла и кислотного остатка содержат водород

ОСНОВНЫЕ

Кроме металла и кислотного остатка содержат гидроксогруппу

Диссоциация солей

$$Na_2SO_4 = 2Na^+ + SO_4^{2-}$$

 $AlCl_3 = Al^{3+} + 3Cl^-$
 $Fe_2(SO_4)_3 = 2Fe^{3+} + 3SO_4^{2-}$

С точки зрения ПГЭД, средними солями называются электролиты, которые в водном растворе диссоциируют на ионы металла и ионы кислотного остатка..

Диссоциация кислых солей

NaHSO₄
$$\Rightarrow$$
Na⁺+HSO₄ α ₁
HSO₄ \Rightarrow H⁺+SO₄ α ₂
 α ₁ \approx α ₂
NaHSO₄ \Rightarrow Na⁺+H++SO₄

С точки зрения ПГЭД, кислыми солями называются электролиты, которые в водном растворе диссоциируют на ионы металла, ионы кислотного остатка и образуют ионы водорода.

Диссоциация основных солей

Ba(OH)Cl = BaOH⁺ + Cl
$$\alpha_1$$
BaOH \Rightarrow Ba²⁺ + OH α_2
 $\alpha_1 \approx \alpha_2$

С точки зрения ПГЭД, основными солями называются электролиты, которые в водном растворе диссоциируют на ионы металла, ионы кислотного остатка и образуют гидроксидионы.

УСЛОВИЯ ПРОТЕКАНИЯ РЕАКЦИИ ИОННОГО ОБМЕНА

Реакции в растворах электролитов протекают до конца если:

- Образуется или растворяется осадок;
- Выделяется газ;
- Образуется малодиссоциирующее вещество (например H2O)

ПРОВЕРЬ СВОИ ЗНАНИЯ

Задание 1

*Вещества, растворы которых проводят электрический ток, называют ...

*Процесс распада электролита на ионы называют ...

*Вещества, растворы которых не проводят электрический ток, называют ...

*Отношение числа частиц, распавшихся на ионы, к общему числу растворенных частиц называют ...

ЭЛЕКТРОЛИТЫ (по характеру образующих ся ионов)

ЭЛЕКТРОЛИТЫ	неэлектролиты
	1

Напишите полное и сокращенное ионные уравнения реакций между растворами гидроксида бария и хлорида меди (II)
а) полное ионное уравнение
б) сокращенное ионное уравнение