Непредельные соединения, содержащие в молекуле две двойные связи, называются диеновыми углеводородами (алкадиенами).

$$C_nH_{2n-2}$$

Строение и классификация

$$H_2C = C = CH_2$$

 $H_2C = CH - HC = CH_2$

кумулированная связь пропадиен (аллен)

сопряженная связь бутадиен-1,3 (дивинил)

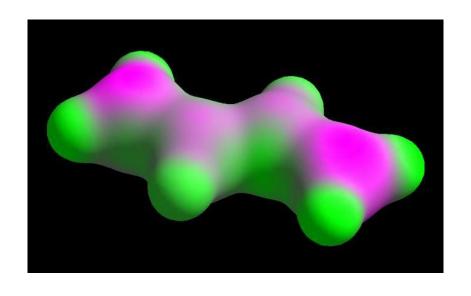
$$H_2C$$
= CH - CH_2 - HC = CH_2

Изолированная

СВЯЗЬ

пентадиен-1,4

Строение и классификация


Сопряжение — это образование единого электронного облака в результате взаимодействия негибридизованных р_z-орбиталей в молекуле с чередующимися двойными и одинарными связями.

Строение и классификация

H

$$C = C$$
 $C = C$
 $C = C$

Делокализация электронной плотности — это ее распределение по всей сопряженной системе, по всем связям и атомам.

бутадиен-1,3

пентадиен-1,4

Строение и классификация

Соединение	Длина двойной связи (C=C), нм	Длина одинарной связи (С–С), нм
CH ₂ =CH-CH=CH ₂	0,136	0,146
CH ₂ =CH ₂	0,134	
CH ₃ -CH ₃		0,154

Номенклатура и изомерия: изменение углеродного

$$H_2C = CH = CH = CH = CH_3$$
 пентадиен-1,3

$$H_2C$$
— C — CH_2 С-метилбутадиен (изопрен)

Химические свойства

Реакции присоединения

$$H_2C=CH-HC=CH_2 + CI_2$$
 $H_2C=CH-HC=CH_2 + CI_2$
 $1,4$
 $1,4$ -дихлорбутен-2

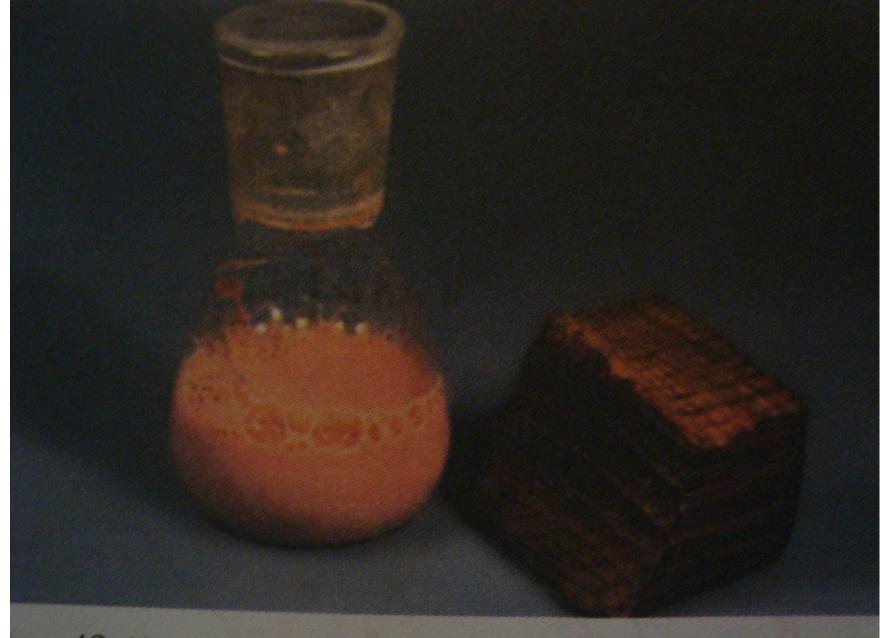
Химические свойства

Гидрогалогенирование

$$CH_2$$
= CH - CH = CH_2 + HBr \longrightarrow CH_3 – CH = CH – CH_2 Бутадиен – 1,3 Br 1 – бромбутен - 2

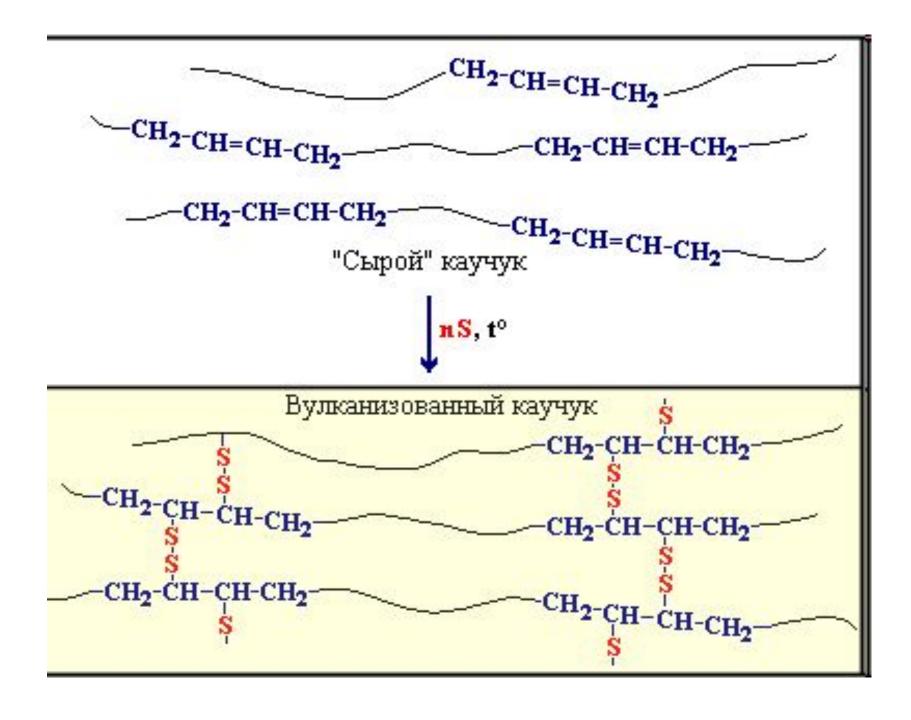
10

Химические свойства


Реакции полимеризации

$$^{\text{h}}$$
 H₂C=C-CH=CH₂ - CH=CH₂ - CH₂ - CH₂ - CH-CH₂ - CH₂ - CH₃ - C

$$\begin{bmatrix} -H_2C-C=CH-CH_2-\\ CH_3 \end{bmatrix}_n$$



ис. 42. Натуральный латекс гевеи и натуральный каучу

Получение алкадиенов

• 1.Дегидратация и дегидрирование спиртов (метод Лебедева)

$$CH_2OH - CH_3$$
 Al_2O_3 $CH_2 = CH - CH = CH_2 + H_2O + H_2$

• 2.Дегидрирование алканов

$$CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{KAT. t} CH_2 = CH - CH = CH_2 + 2H_2$$

Каучуконосы

Кок-сагыз

Применение

