Азотная кислота и ее

соли.

Раскаленный уголек, брошенный в концентрированную азотную кислоту, продолжает гореть, при этом выделяется бурый газ и газ, образующий с известковой водой Ca(OH)₂ белый осадок. Напишите уравнения реакций.

План изучения азотной кислоты.

- <u>1.Состав</u>.
- 2.Строение.
- 3. Физические свойства.
- 4. Химические свойства.
- 5. Получение и применение.

Состав и строение азотной кислоты.

- -Запишите молекулярную, электронную, структурную формулы азотной кислоты.
- Укажите тип химической связи в молекуле азотной кислоты.
- -Расставьте заряды ионов и степени окисления химических элементов ■
- -Составьте уравнение электролитической диссоциации **.**

молекулярная формула – HNO_3

тип химической связи - ковалентная полярная

уравнение электролитической диссоциации:

$$HNO_3 \rightarrow H^+ + NO_3^-$$

Заряды ионов+ -H NO₃

Степень окисления химических элементов.
+ +5 -2
H N O

Перечислите физические свойства азотной кислоты? Что надо сделать при попадании на кожу азотной кислоты? Как правильно хранить азотную кислоту? На каком свойстве азотной

На каком свойстве азотной кислоты это основано?

Физические свойства.

Азотная кислота — это бесцветная жидкость, имеет резкий запах, легко испаряется, кипит при **t** 83°.

При попадании на кожу может вызывать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой **NaHCO₃**). С водой смешивается в любых соотношениях.

Обычно применяемая в лаборатории азотная кислота содержит **63% HNO₃** и имеет плотность **1,4** г/см³. При хранении довольно легко, особенно на свету, разлагается по уравнению:

 $4HNO_3 \rightarrow 2H_2O + 4NO_2\uparrow + O_2\uparrow$

Выделяющийся газ **NO₂** окрашивает азотную кислоту в бурый цвет.

HNO₃ является сильным окислителем.

- Азотная кислота проявляет все типичные свойства сильных кислот: взаимодействует с оксидами и гидроксидами металлов, с солями (составьте соответствующие уравнения реакций).
- С металлами она ведет себя по –особому ни один из металлов не вытесняет из азотной кислоты водород, независимо от ее концентрации.
- Почему азотная кислота является сильным окислителем?

 $HNO_3 \rightarrow H^+ + NO_3^-$

 $2HNO_{3}+CuO\rightarrow Cu(NO_{3})_{2}+H_{2}O\\HNO_{3}+NaOH\rightarrow NaNO_{3}+H_{2}O\\2HNO_{3}+Cu(OH)_{2}\rightarrow Cu(NO_{3})_{2}+2H_{2}O\\2HNO_{3}+Na_{2}CO_{3}\rightarrow 2NaNO_{3}+CO_{2}+H_{2}O$

Ни один из металлов не вытесняет из азотной кислоты водород...

- Продукт восстановления зависит от положения металлов в ряду напряжений, от концентрации кислоты и условий проведения реакции.
- Например, при взаимодействии с медью концентрированная кислота восстанавливается до оксида азота(IV):
 - Cu+HNO₃→Cu(NO₃)₂+NO₂+H₂O? разбавленная – до оксида азота(II):
 - $Cu+HNO_3 \rightarrow Cu(NO_3)_2 + NO+H_2O$ (расставьте коэффициенты методом электронного баланса).
- Железо и алюминий при действии концентрированной HNO₃ покрываются прочной оксидной пленкой, предохраняющей металл от дальнейшего окисления, т.е. кислота пассивирует их.
- В чем особенность реакций между металлами и азотной кислотой? Почему азотную кислоту, можно перевозить в стальных и алюминиевых баллонах?

Получение азотной кислоты.

 Предложите две цепочки превращений, приводящих к получению азотной кислоты, исходя из азота и аммиака. §24,c.143,145; §25,c.150; §27,c.156,статья «Оксиды».

Применение азотной кислоты.

§27, с.157 4 абзац.

Где находит применение азотная кислота?

домашнее задание.

- §27, статья «Соли азотной кислоты».
- •? 3 и 7