If 150.0 mL of 0.100 M HBr and 50.0 mL of 0.100 M KOH solutions are mixed, what are the molarities of the ions in the resulting solution?

- 1. 0.0750 *M* in H⁺, 0.0750 *M* in Br⁻, 0.0250 *M* in K⁺
- 2. 0.0500 *M* in H⁺, 0.0750 *M* in Br⁻, 0.0500 *M* in K⁺
- 3. 0.0500 *M* in H⁺, 0.0750 *M* in Br⁻, 0.0250 *M* in K⁺
- 4. 0.0667 *M* in H⁺, 0.100 *M* in Br⁻, 0.0333 *M* in K⁺
- 5. 0.0500 *M* in H⁺, 0.100 *M* in Br⁻, 0.100 *M* in K⁺

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

A 0.742-gram sample of KHP, $KC_6H_4(COO)(COOH)$, reacts with 35.0 mL of $Ba(OH)_2$ solution. What is the molarity of the $Ba(OH)_2$ solution?

- $1.\,\,0.127\,M$
- 2. 0.0636 *M*
- $\overline{3.0.0520}\,M$
- 4. 0.208 *M*
- 5. 0.104 *M*

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19 5	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

Calculate the normality of a solution that contains 4.5 g of (COOH)₂ in 3000. mL of solution. (Assume the (COOH)₃ is to be completely neutralized.)

- 1. 0.033 *N*
- 2. 0.045 *N*
- $\overline{3.0.066} N$
- $\overline{4.0.090} N$
- |5. 0.12 N|

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38		
	24 25 26 27 28 29 30 31 32 33 34 35 36	40
41 42 43 44 45 46 47 48 49 50	44 45 46 47 48 49 50	

A solution of H₂SO₄ contains 9.11 mg of H₂SO₄ per mL. What is the normality of the solution? (Assume the H₂SO₄ is to be completely neutralized by a base.)

- 1. 0.0482 *N*
- 2. 0.684 *N*
- 3. 0.186 *N*
- 4. 0.372 *N*
- 5. 0.0930 *N*

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19 5	20
I	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50										

How many equivalent weights of phosphoric acid are contained in 500. mL of 2.00 *M* phosphoric acid? (Assume the acid is to be completely neutralized by a base.)

- 1. 1.00 eq
- 2. 2.00 eq
- 3. 3.00 eq
- 4. 4.00 eq
- 5. 6.00 eq

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	⁴ 18	19 5	20
	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
I	41	42	43	44	45	46	47	48	49	50										

What mass of NaOH would be required to neutralize the acid in 75.0 mL of 0.880 *N* HC1?

- 1. 2.64 g
- 2. 5.28 g
- 3. 2.6 kg
- 4. 3.83 g
- 5. 6.60 g

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19 5	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

If 20.8 mL of Ba(OH)₂ solution reacts with 0.306 g of KHP, KC₆H₄(COO)(COOH), what is the normality of the Ba(OH)₂ solution?

- 1. 0.0361 *N*
- 2. 0.144 *N*
- $3.\,\,0.300\,N$
- 4. 0.175 *N*
- 5. 0.0721 *N*

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

What is the oxidation number of phosphorus in KH₂PO₄?

$$1. +1$$

$$2. +2$$

$$3. +3$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19 5	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

What is the oxidation number of P in the H₂PO₄ ion?

$$2. +2$$

$$3. +3$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19 5	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

Balance the following formula unit equation for a reaction. What is the sum of **all** of the coefficients?

$$K_2Cr_2O_7 + HCl \longrightarrow KCl + CrCl_3 + Cl_2 + H_2O$$

- 1. 20
- 2. 22
- 3. 26
- 4. 29
- 5. 32

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19 5	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

Balance the following net ionic equation. What is the sum of the coefficients?

- 1. 27
- 2. 29
- 3.31
- 4. 33
- 5.35

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	⁴ 18	19 5	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

Balance the following net ionic equation. What is the sum of the coefficients?

$$MnO_4^- + Se^{2-} \longrightarrow MnO_2 + Se$$
 (basic solution)

- 1. 20
- 2. 22
- 3. 24
- 4. 26
- 5. 28

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	⁴ 18	19 5	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										

An impure 0.500-gram sample of FeSO₄ reacts with 20.0 mL of $0.0200 M \text{ KMnO}_4$.

Assuming that the impurities do not react with KMnO $_4$, what is the percentage of FeSO $_4$ in the sample?

$$MnO_4^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$$

- 1. 52.3%
- 2. 56.6%
- 3. 60.8%
- 4. 64.5%
- 5. 69.2%

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19	20
	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
I	41	42	43	44	45	46	47	48	49	50										

2

A solution of $Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O$ containing 2.10 grams of the compound is titrated with acidic $Na_2Cr_2O_7$ solution. If 41.6 mL of the $Na_2Cr_2O_7$ solution is required, what is the molarity of the $Na_2Cr_2O_7$ solution? The reaction products include Cr^{3+} and Fe^{3+} .

- 1. 0.129 M
- 2. 0.0215 *M*
- 3. 0.0644 *M*
- 4. 0.0387 *M*
- 5. 0.0744 *M*

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	418	19 ⁵	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50										