Воронежская государственная медицинская академия им. Н.Н. Бурденко

кафедра Химии

Зав. кафедрой д.х.н., профессор Пономарева Наталия Ивановна

Дисциплина: Химия

Лектор: к.х.н., доцент Рябинина Елена Ивановна

Простые правила

Сванте Август Аррениус 1859-1927

Фридрих Вильгельм Оствальд 1853-1932

Лекция 1. РАСТВОРЫ

Из списка Нобелевских лауреатов

- 1901 г. Вант-Гофф первый Нобелевский лауреат, хим. кинетика, осмос
- 1903 г. Аррениус электролитическая теория, диссоциация
- 1909 г. Оствальд закон разведения
- 1925 г. Зигмонди коллоидная химия

Якоб Хендрик Вант-Гофф 1852-1911

Рихард Адольф Зигмонди 1865-1929

Раствор - гомогенная (однородная) система переменного состава, состоящая из двух и более компонентов.

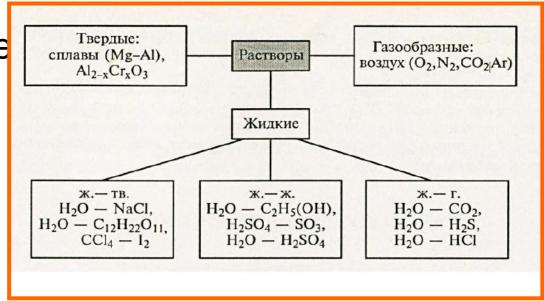
Компоненты раствора

Растворитель

Компонент, агрегатное состояние которого не изменяется при образовании раствора, а при одинаковом агрегатном состоянии компонентов находится в избытке.

Растворенное вещество

вещество, равномерно распределенное в растворителе в виде молекул или ионов


Классификация растворов

1 По восина пойотвина насиля и испандации товии

Идеальные растворы, между компонентами которого отсутствуют силы взаимодействия.

Истиинье растворы - существуют взаимодействия.

1. По агре

- 3. По размеру частиц растворенного вещества : **истинные растворы** — однородные (гомогенные) системы с размером частиц 10⁻¹⁰ — 10⁻⁹ м
 - растворы электролитов (ионные)
 - растворы неэлектролитов (молекулярные)

коллоидные растворы — неоднородные (гетерогенные) системы с размером частиц 10⁻⁹ — 10⁻⁶ м (мицеллярные).

4. По типу растворителя: **водные растворы** (растворитель – вода) и **неводные растворы** (растворители – спирт, эфир, бензол, толуол и т.д.).

5. По количеству растворенного вещества:

концентрированные (с большим содержанием растворенного вещества) и разбавленные (с небольшим содержанием).

6. По состоянию равновесия:

насыщенные (в которых данное вещество при данной температуре больше не растворяется, т. е. такой раствор находится в равновесии с растворяемым веществом), ненасыщенные и пересыщенные.

Способы выражения состава растворов

Состав раствора количественно характеризуется множеством показателей. Вот некоторые из наиболее важных:

А. Концентрации (размерные величины)

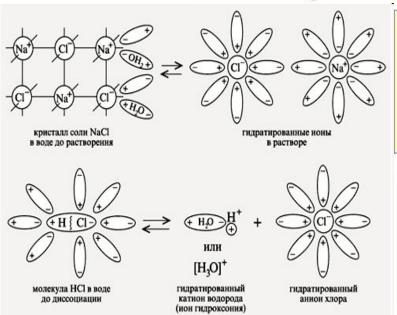
 Молярная концентрация (молярность) — количество молей растворенного вещества в литре раствора. [моль/л]

Подробнее о способах выражения состава растворов и связи между ними вы познакомитесь на лабораторных занятиях

- Мольная доля отношение числа молей растворенного компонента к общему числу молей раствора.
- Массовая доля отношение массы растворенного компонента к общей массе раствора.
- Объемная доля (для смесей газов и растворов ж-ж) отношение объема растворенного компонента к сумме объемов растворителя и растворенного вещества до начала процесса растворения.

Доли могут быть выражены и в процентах.

Растворение — физико-химический процесс, протекающий между твердой и жидкой фазой и характеризующийся переходом твердого вещества в раствор.



- Разрушение кристаллической решетки (физическая сторона процесса). Происходит с поглощением теплоты, т.е. ΔH₁>0;
- 2. Взаимодействие частиц вещества с молекулами воды (химическая сторона процесса). Происходит с выделением теплоты, т.е. ΔH₂<0.

Суммарный тепловой эффект: $\Delta H = \Delta H_1 + \Delta H_2$

Процесс сольватации может приводить к распаду молекул растворенного вещества на ионы

Электролитическая диссоциация

1. Ионные соединения.

$$NaCl_{(cr)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Ион-дипольное взаимодействие с растворителем:

- а) разрушение кристаллической решетки
- б) гидратация ионов
- 2. Молекулярные соединения.

$$HCI_{(g)} + H_2O \rightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$

- а) разрыв ковалентной связи
- б) протонирование воды
- в) гидратация ионов

Полученный раствор называется электролитом

Слабые и сильные электролиты

Эпектролиты	Сильные	Слабые		
Кислоты	HCl, HBr, HI, HNO ₃ , HClO ₄ , H ₂ SO ₄	H ₂ S, HCN, HNO ₂ , H ₂ SO ₃ , HClO, H ₂ CO ₃ и органические кислоты		
Основания	KOH, NaOH, Ca(OH)2, Ba(OH)2	растворимые: NH ₃ , амины; нерастворимые: большинство гидроксидов металлов (Al(OH) ₃ , Zn(OH) ₂)		
Соли	NaCl, $Ca(NO_3)_2$ — почти все соли, в том числе и комплексные: $[Cu(NH_3)_4]SO_4 \rightleftarrows (Cu(NH_3)_4]^{2+} + SO_4^{2-}$	HgCl ₂ ; комплексные ионы, например: [Cu(NH ₃) ₄] ²⁺		
Основные Кажущаяся степень диссоциа- щии ($\alpha_{\text{каж}}$), активность (a), коэффициент активности (γ), ионная сила раствора (I)		Степень диссоциации (α), константа диссоциации ($K_{\text{дисс}}$), концентрация (C), при больших концентрациях — активность (a)		

Основные характеристики электролитов

- Полнота распада (сила электролита) характеризуется количественной величиной степенью диссоциации.
- Степень диссоциации (α греческая буква альфа) это отношение числа молекул, распавшихся на ионы (п), к общему числу растворенных молекул (N):

Степень диссоциации
$$\alpha = \frac{n}{N} \qquad \alpha\% = \frac{n}{N} \cdot 100\%$$

Степень диссоциации зависит от:

- - природы электролита и растворителя: чем полярнее химическая связь в молекуле электролита и растворителя, тем выше значение α.
- - концентрации электролита: с уменьшением концентрации электролита (разбавление), α увеличивается.
- - **температуры**: α возрастает при повышении температуры

Константа диссоциации

• Электролитическая диссоциация слабых электролитов, согласно теории Аррениуса, является обратимой реакцией, например:

$$KA \leftrightarrow K^+ + A^-$$

Сванте Август Аррениус

• Константу равновесия такой реакции можно выразить уравнением:

 $K = \frac{[K^+][A^-]}{[KA]} = \text{const} = f(t).$

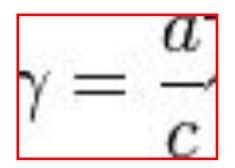
 Константу равновесия применительно к реакции диссоциации называют константой диссоциации (К_д).

На практике для характеристики слабого электролита часто используют показатель константы диссоциации (рК): pК = -lgK_д. Чем больше pK, тем слабее электролит.

Связь константы диссоциации и степени диссоциации (закон разведения Оствальда)

$$K = \frac{\alpha^2 C}{1 - \alpha}.$$

Вильгельм Фридрих Оствальд


Для очень слабых электролитов при α << 1 это уравнение упрощается:

$$K_{\mathcal{A}} = \alpha^2 C$$

Особенности растворов сильных электролитов

Вследствие полной диссоциации число ионов в растворе сильных электролитов больше, чем в растворе слабых той же концентрации.

- При увеличении концентрации число ионов в растворе увеличивается, сила взаимодействия их между собой и с растворителем возрастает, что приводит к снижению подвижности ионов и создает эффект уменьшения их концентрации.
- Количественно влияние межионного взаимодействия характеризуют:
- Активность иона (а) эффективная концентрация иона;
- Коэффициент активности (γ) мера отклонения активности иона от его истинной концентрации.

- В разбавленных растворах $\gamma = 1$, тогда a = C.
- Коэффициент активности иона (γ) зависит от температуры; общей концентрации всех ионов в растворе (Г.Льюис ввел понятие ионной силы раствора)

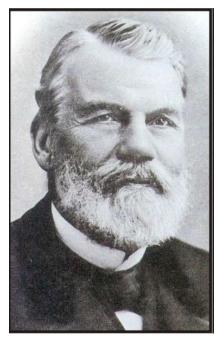
• Ионная сила раствора (I) - величина, характеризующая силу электростатического взаимодействия ионов в растворе, которая равна полусумме произведений молярных концентраций всех ионов на квадрат их заряда:

$$I = \frac{1}{2} \sum_{i} C_{i} z_{i}^{2}$$

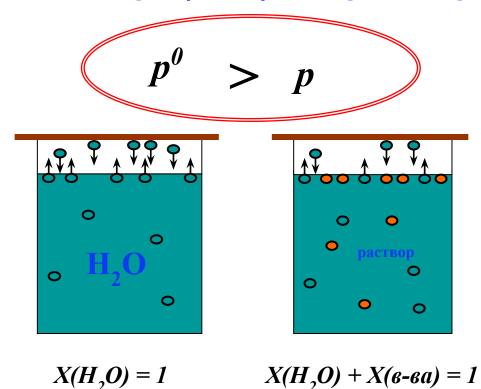
Ионная сила плазмы равна 0,167; все кровезаменители готовят с І равной плазме.

• В теории сильных электролитов Дебая - Хюккеля существует связь между коэффициентом активности иона и ионной силой раствора:

$$log(\gamma_i) = -Az_i^2 \sqrt{I}$$


где у — коэффициент активности, А постоянная, не зависящая от заряда $log(\gamma_i) = -Az_i^2 \sqrt{I}$ иона и ионной силы раствора, но зависящая от диэлектрической постоянной растворителя И температуры

Коллигативные свойства растворов

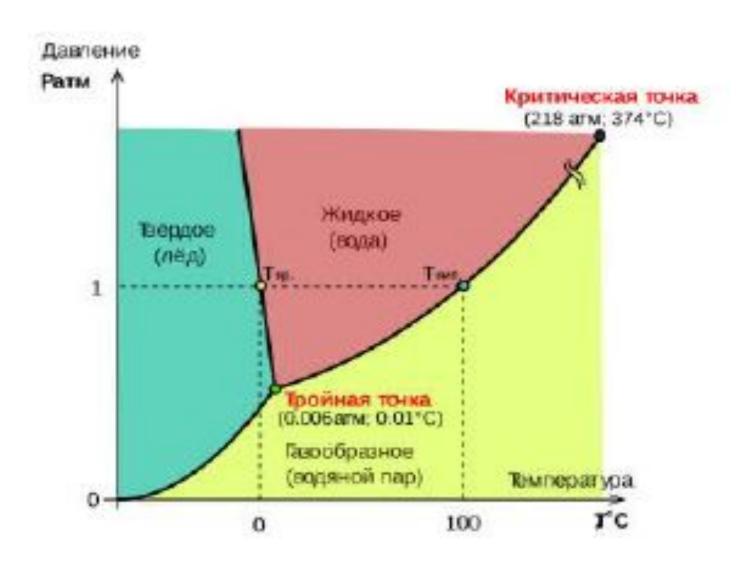

Определяются только числом растворенных частиц, а не их природой

- 1. Давление пара над раствором.
- 2. Понижение температуры замерзания.
- 3. Повышение температуры кипения.
- 4. Осмотическое давление.

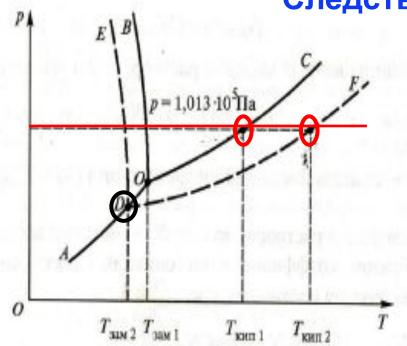
Давление насыщенного пара (ДНП) над раствором

Франсуа Мари Рауль

Закон Рауля: давление пара растворителя над раствором (р) прямо пропорционально давлению пара над чистым растворителем (р⁰) и его мольную долю:


$$p = p^0 \cdot X(H_2O)$$

Вторая формулировка закона Рауля:


относительное понижение давления насыщенного пара растворителя (р⁰) над раствором (р) нелетучего неэлектролита пропорционально мольной доле (X) растворенного вещества:

$$\frac{p^0 - p}{p^0} = X(\varepsilon - \varepsilon a)$$

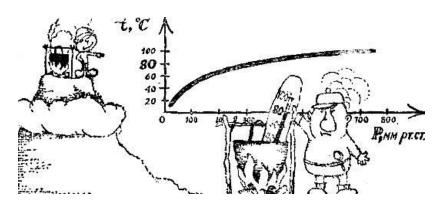
Диаграмма состояния воды

Следствия закона Рауля

Любая жидкость закипает, когда давление пара становится равным атмосферному давлению.

Замерзает раствор, когда давление водяного пара над раствором становится равным давлению пара над твердым растворителем – льдом.

Растворы кипят при более высоких температурах


$$\Delta T_{KU\Pi} = T_{KU\Pi}(p-pa) - T_{KU\Pi}(p-ля), a$$

замерзают при более низких

$$\Delta T_{\text{зам}} = T_{\text{зам}}(\text{p-ля}) - T_{\text{зам}}(\text{p-ра})$$

Понижение температуры замерзания и повышение температуры кипения прямопропорционально моляльной концентрации раствора:

$$\Delta T = K \cdot m_c$$

где

 ΔТ – понижение температуры замерзания и повышения температуры кипения раствора;

К – криоскопическая или эбулиоскопическая константа растворителя,

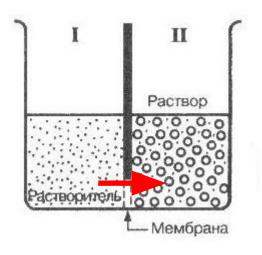
т_с - моляльная концентрация раствора (моль/кг).

Криоскопические и эбулиоскопические константы некоторых растворителей

Растворитель	T _{ion} , °C	E	T _{ru} , °C	K
Вода, Н2О	100	0,52	0	1,86
Бензол, С ₆ Н ₆	80,1	2,53	5,5	5,12
Хлороформ, СНСІ ₃	61,7	3,63	-63,5	4,70
Сероуглерод, CS ₂	46,2	2,34	-111,5	3,83
Тетрахлорид углерода, CCl ₄	76,5	5,03	-23	30

эти константы зависят от природы растворителя при $m_C = 1$ моль/кг; $K_{\rm kp} = \Delta T_{\rm 3am}$; $K_{\rm 96} = \Delta T_{\rm кип}$.

В растворах электролитов число частиц больше из-за диссоциации. Вант-Гофф дал поправочный *изотонический коэффициент* і, который учитывает диссоциацию электролитов.


Изменение температуры кипения и замерзания для растворов <u>электролитов</u> рассчитывается с учетом изотонического коэффициента (i) по уравнениям:

$$\Delta T_{\kappa\mu\Pi} = i \cdot K_{36} \cdot m_{c}$$

$$\Delta T_{3aM} = i \cdot K_{\kappa p} \cdot m_{c}$$

Осмос. Осмотическое давление

Осмос — это односторонняя диффузия воды через полупроницаемою мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией.

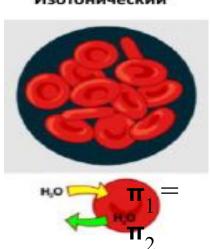
Осмотическое давление π – это минимальное гидростатическое давление, которое надо приложить к раствору, чтобы предотвратить осмос.

Закон Вант-Гоффа:

для растворов неэлектролитов

$$\pi = C_M \cdot R \cdot T$$
, [κΠα]

для растворов электролитов


$$\pi$$
= i · C_M· R·T, [κΠα]

где С_м- молярная концентрация (моль/л), R - универсальная газовая постоянная (8,31 Дж/моль·К), T – температура (К), i-изотонический коэффициент.

В организме осмотическое давление должно быть постоянным (изоосмия):

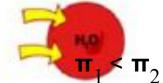
$$\pi_{\text{(плазмы)}}$$
=7,7 атм= 740-780 кПа = 280-310 мОсм/л $C_{\text{осм}} = C_{\text{M}} \cdot \text{i,} [\text{Осм/л}]$

В медицинской практике применяют *изотонические* растворы. Это растворы, осмотическое давление которых равно π (плазмы) (0,9 % NaCl – физраствор, 5 % раствор глюкозы).

Растворы, у которых π больше, чем у π (плазмы), называются *гипертоническими*.

В медицине они применяются для очистки ран от гноя (10 % NaCl), для удаления аллергических оттенков (10 % CaCl₂, 20 % – глюкоза), в качестве слабительных лекарств (Na₂SO₄·10H₂O, MgSO₄·7H₂O).

Гипертонический



Экзоосмос (движение воды из клетки в плазму) приводит к сморщиванию оболочки клетки вызывая плазмолиз

Растворы, у которых π меньше, чем у π (плазмы), называются *гипотоническими*. В медицине они практически не применяются.

Гипотонический раствор

Эндоосмос (движение воды в клетку из плазмы) приводит к набуханию оболочки клетки с появлением напряженного состояния — тургора. Однако при большой разнице концентраций происходит разрушение клеточной мембраны и лизис клетки, что является причиной гемолиза.

Значение осмоса

- □ упругость, тургор клеток
 - □ эластичность тканей, форма органов
- □ усвоение пищи, образование лимфы, мочи, кала
- □ действие лекарств
- □За счет осмоса вода в организме распределяется между кровью, тканями, клетками.

Методы, основанные на изучении коллигативных свойств растворов

 \diamondsuit осмометрия — измерение π ,

 \clubsuit криоскопия — измерение $\Delta T_{\text{зам}}$ (p-pa),

\Rightarrow эбулиоскопия — измерение $\Delta T_{\text{кип}}$ (p-pa).

Применяются для определения:

- ✓ молекулярных масс различных веществ, чаще всего биополимеров (белков);
- у суммарной концентрации всех растворенных частиц;
- ✓ изотонического коэффициента, степени и константы диссоциации.

• Криоскопическому методу исследования отдается предпочтение, поскольку температуру замерзания можно измерить с большой точностью и при низких температурах не происходит изменений в структуре растворенных веществ и растворителя.

• При выборе растворителя предпочтение следует отдавать растворителю с большей криоскопической константой.

СПАСИБО ЗА ВНИМАНИЕ