Среднее значение эффективной дозы, получаемое жителем нашей планеты от природных источников, составляет

2,4 м3в/год. (миллизивертов в год)

ECTECTBEHHЫЕ И ИСКУССТВЕННЫЕ

ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И РАДИОНУКЛИДОВ

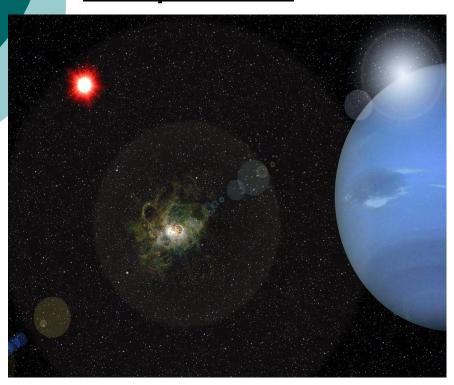
Все живые существа на Земле постоянно подвергаются воздействию ионизирующей радиации путем внешнего и внутреннего облучения от естественных и искусственных источников ионизирующих излучений

Ест<u>ественные источники ионизирующих</u> излучений и радионуклидов

- Космическое излучение.
- Первичные радионуклиды земной коры.

Природным радиационным фоном

называют ионизирующие излучения, исходящие от природных источников.


Космогенные источники

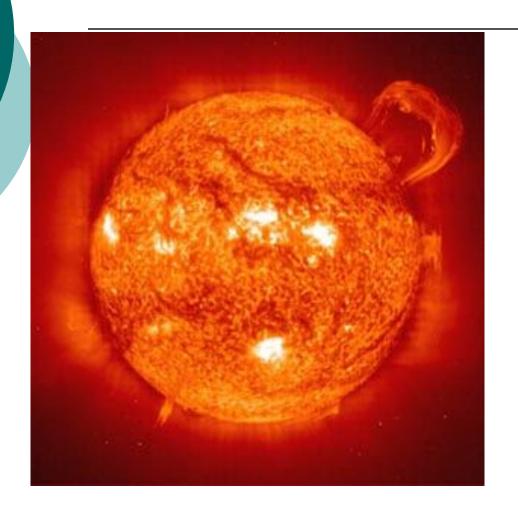
Космогенные источники:

- а) первичное космическое излучение заряженные частицы высокой энергии, приходящие из межзвездного пространства и из солнечной галактики, а также коротковолновое электромагнитное излучение;
- **б)** вторичное космическое излучение ионизирующее излучение, образующееся в земной атмосфере в результате взаимодействия первичного космического излучения с атомами воздуха. Наиболее распространенными продуктами космогенной активации являются: ³H, ^{7,10}Be, ¹⁴C, ²²Na, ³²Si, ^{32,33}P, ³⁵S, ^{36,39}CI;
- о **в)** радиоактивные изотопы, попадающие на поверхность Земли и в ее атмосферу из космического пространства вместе с космической пылью и метеоритными частицами.

Первичное космическое излучение:

<u>Галактическое</u> <u>излучение</u>

Протоны высоких энергий (79%–87%)


Атомные ядра от водорода и гелия до более тяжелых ядер лития, бериллия и др. (~10%)

Электроны и гамма-лучи $(\sim 1\%)$

Энергия заряженных частиц:

от
$$3 - 15 \Gamma \ni B (10^9 \ni B)$$

до $10^{17} - 10^{18} \ni B$.

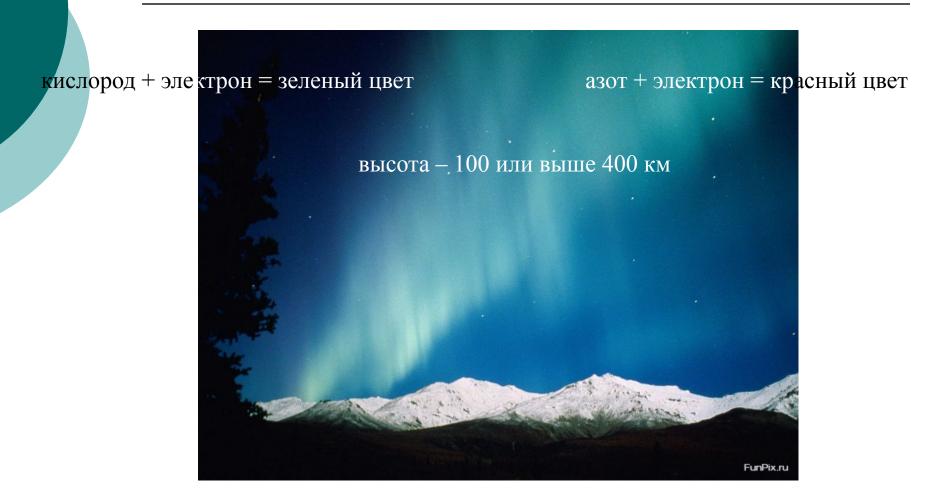
•Солнечное излучение

Электромагнитное излучение (вплоть до рентгеновского диапазона)

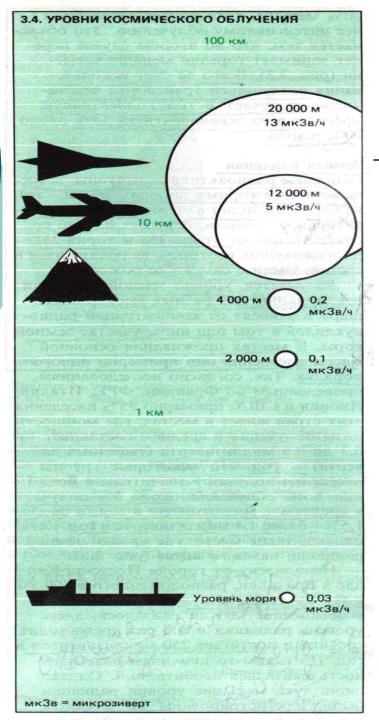
Протоны

Электроны

Ядра гелия и других элементов


Метеоритный дождь

Вторичное космическое излучение:


- \circ μ^{\pm} -мюоны (тяжелый аналог электрона $m = 200 m_e$) и π^{\pm} -мезоны (70%),
- о электроны и позитроны (26%),
- о первичные протоны (0,05%),
- о гамма-кванты,
- о быстрые и сверхбыстрые нейтроны,
- \circ атомы различных элементов (3 H и 14 C).

Полярное сияние

Интенсивность космического излучения зависит от следующих факторов:

- величины потока галактического излучения;
- о активности солнца;
- географической широты;
- о высоты над уровнем моря.

Зависимость космического фона от высоты над

уровнем моря

Высота, км	Мощность дозы, мкЗв/ч	Среднегодов ая доза, мЗв
0 4 8,848 (Эверест) 10 20	0,035 0,2 1,0 2,9 12,7	0,3 1,75 8

Группы лиц, наиболее подверженные действию космического излучения:

- жители равнин и морских побережий;
- о жители высокогорья и чабаны, пасущие скот;
- пассажиры самолета, поднимающегося на высоту 10-12 км (облучение из космоса превышает естественный уровень более чем в 100 раз);
- о экипажи воздушных судов;
- о космонавты.

Природные радиоактивные вещества

Природные радиоактивные вещества:

- Первая группа: нуклиды радиоактивных семейств (рядов) ²³⁵U, ²³⁸U и ²³²Th с продуктами их распада.
- Вторая группа: радиоизотопы, находящиеся в земной коре и объектах внешней среды с момента образования Земли (⁴⁰К, ⁸⁷Rb, ⁴⁸Ca, ⁹⁶Zn, ¹³⁰Te, ¹²⁹I и др.).
- Третья группа: радиоактивные изотопы ¹⁴С,

 ³Н, ⁷Ве, ¹⁰Ве, образующиеся непрерывно под действием космического излучения.

Каждый радиоактивный ряд представляет собой цепочку последовательных превращений, когда ядро, образующееся при распаде материнского ядра, тоже, в свою очередь, распадается, вновь порождая неустойчивое ядро и т.д.

В природе существует три родоначальника — уран-235, уран-238 и торий-232, и, соответственно, три радиоактивных ряда — два урановых и один ториевый.

«Вековое равновесие» — скорость распада каждого радионуклида равна скорости его образования

В природе концентрация естественных радионуклидов варьирует в широких пределах.

Больше всего в окружающей среде ⁸⁷Rb и ⁴⁰К.

Радиоактивный калий является основным радионуклидом, создающим природную активность кормов и сельскохозяйственной продукции в большинстве геохимических провинций Земли.

Радионуклиды в атмосфере

- радиоактивные вещества в газообразном состоянии (²²²Rn и ²²⁰Th (торон), ¹⁴C, ³H);
- радиоактивные вещества в виде аэрозолей (⁴⁰К, ²³⁸U, ²²⁶Ra и др.)

Одни и те же радионуклиды могут поступать в атмосферу как *в результате природных процессов*, так и *вследствие технической деятельности человека* (например, ³H, ¹⁴C, ⁸⁵Kr).

Пути поступления радионуклидов в атмосферу

- при выветривании земных пород и разложении органических веществ;
- при диффузии из почвы в приземные слои атмосферы радона (²²²Rn), торона (²²⁰Th) и продуктов их распада;
- о при испарении с водной поверхности;
- о под действием космического излучения;
- с космической пылью (²⁶AI, ¹⁰Be и др.);
- о в результате деятельности человека.

Радиоактивность атмосферы

Радиоактивность атмосферного воздуха варьирует в широких пределах

$$7,4*10^{-4} - 16,3*10^{-3}$$
 Бк/л или $2*10^{-14} - 4,4*10^{-13}$ Ки/л

Факторы, от которых зависит радиоактивность атмосферы:

- о местоположения,
- содержания радионуклидов в материнских земных породах,
- о времени года,
- о состояния атмосферы,
- о метеорологических условий и т.д.

Радиоактивность земной коры и почв

- Радионуклиды урановых и ториевого рядов
- Калий-40, рубидий-87, кальций-48, цинк-96, йод-129 и др.

Доза гамма-излучения разных земных пород у поверхности Земли

 $0,\!26-11,\!5\,\,{
m M\Gamma}p/{
m Г}{
m O}{
m Д}$ (в среднем)

0,12-0,7 Гр/год (в некоторых районах Земли)

Например бразильский курорт Гуарапари, штат Керала в Индии — моноцитовые пески, Гуандон в Китае — вследствие выхода на поверхность Земли радиоактивных руд и пород, а также значительной примеси в почве урана и радия

Радионуклиды в гидросфере

o 40K

o 87Rb

²³⁸U, ²³⁵U, ²³²Th
 и продукты их распада

Радионуклиды космического происхождения

Радиоактивность гидросферы складывается из радиоактивности:

- о атмосферных осадков,
 - о речной воды,
 - о озерных вод,
 - о подземных вод,
 - о морской воды.

Содержание радиоизотопов в водных источниках имеет прямую зависимость от степени

минерализации воды

Радиоактивность флоры и фауны

- ⁴⁰K, ¹⁴C, ³H, ¹⁸O и ²²Nа являются биогенами и весьма интенсивно усваиваются растениями и животными.
- Внешние источники природного радиационного фона – космическая радиация и излучения естественных радионуклидов, рассеянных в почве, воде, воздухе, строительных и других материалах.
- Внутренние источники природной радиации, содержащиеся в самом организме и поступающие в него с пищей, водой и воздухом.

1/3 этой дозы – внешнее облучение 2/3 дозы – внутреннее облучение

Суммарная доза, получаемая от природного радиационного фона людьми, колеблется в разных точках земной поверхности от 1 до 110 м3в/год на человека

Неравномерность природного радиационного фона на нашей планете обусловлена:

- Различием в концентрации природных радионуклидов в различных участках земной коры и на ее поверхности.
- Высотой местности над уровнем моря, географической широтой, вариабельностью космического излучения.
- Преимущественным потреблением определенных продуктов питания.