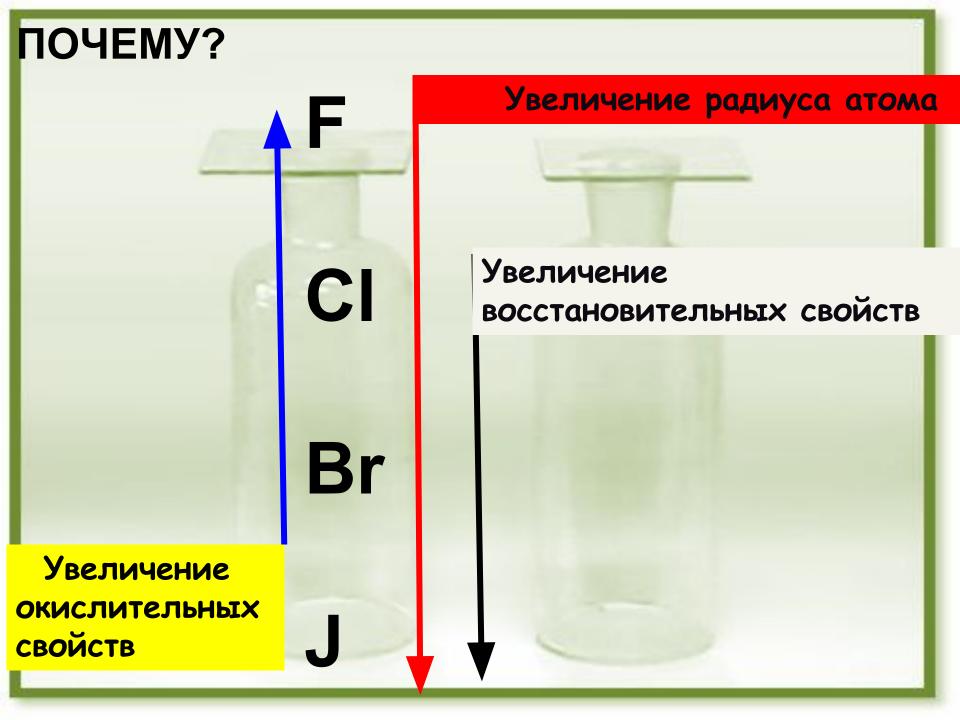

18,998 7 2s²2p⁵

Галогены (солеобразующие)



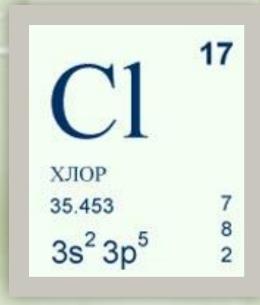
Электронные формулы

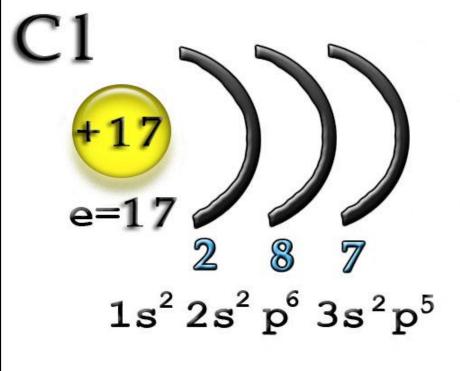
Br ...4S²4P⁵

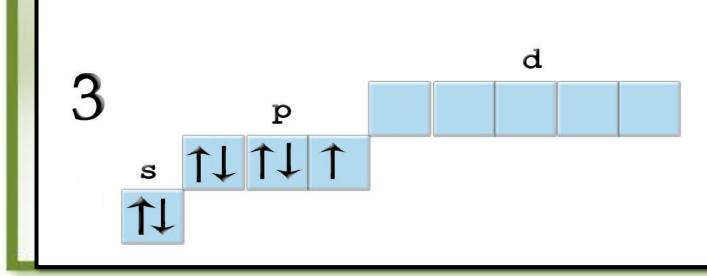
 $I ... 5S^2 5P^5$

Вывод: галогены - р - элементы На внешнем энергетическом уровне 7 электронов, один из них неспаренный.

Химическая связь


KH

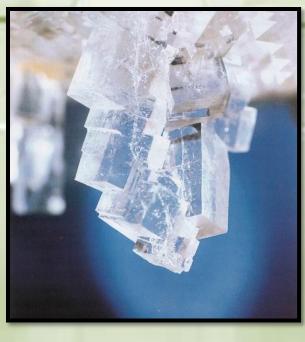



Кристаллическая решетка молекулярная

Вещест во	Агрегатное сост. при н.у	Цвет	Запах	† плав С ⁰ .	Ткип. , <i>C</i> ⁰ .
ΦΤΟΡ F ₂	газ, не сжижается	Светло- жёлтый.	Резкий, раздра- жающий.	-220	-188
ХЛОР	Газ, сжижаю- щийся при обычной † под давлением.	Желто- зелёный.	Резкий, удушливый	-101	-34
БРОМ Br ₂	Жидкость	Буровато- коричневый	Резкий, зловонный.	-7	+58
иод <mark>I</mark> 2	Твердое в-во.	Черно- фиолетовый с металич. блеском.	Резкий	+114	+186

Молекула хлора

Молекула хлора двухатомна. Связь одинарна и образуется при перекрывании одноэлектронных *р*-облаков двух атомов хлора. Кроме того, в молекуле хлора имеет место донорно-акцепторное взаимодействие, упрочняющие связь.



минерал

Ы

Карналли т

Каменная соль = поваренная соль = галит

Сильви

нолучени

- 1. Электролиз хлоридов щелочных металлов (NaCl, KCl).
- 2. Окисление HCl кислородом воздуха

$$4HCI + O_2 = 2CI_2 + 2H_2O$$

В лаборатории

$$2KMnO_4+16HCl$$
 (конц.) =
$$2KCl+2MnCl_2+8H_2O+5Cl_2$$

$$MnO2 + 4 HCl = MnCl2 + Cl2 + 2 H2O$$

$$6HCI + KCIO3 = 3CI2 + KCI + 3H2O$$

нолучени

2KMnO₄+16HCl (конц.)= 2KCl + 2MnCl₂ + 8H₂O + 5C

Химические свойства

Хлор – активный окислитель. Энергично реагирует с металлами и большинством неметаллов (за исключением O_2 , N_2 и благородных газов). Вступает также в реакции диспропорционирования, для протекания которых наиболее благоприятна щелочная среда, способствующая образованию простых и сложных анионов.

Хлор - один из самых активных неметаллов. При взаимодействии с металлами с переменной валентностью (Fe, Cr) в отличие от соляной кислоты заставляет их проявлять большую степень окисления:

$$2K + Cl2 = 2 KCI$$

$$2AI + 3Cl2 = 2AICl3$$

$$2 Fe + 3Cl2 = 2 FeCl3$$

$$Cu + Cl2 = CuCl2$$

Cu+Cl₂=CuCl₂

2Fe+3Cl₂ = 2FeCl₃

Неметандами

 $CBETYCI_2 + C = CCI_4$ $3CI_2 + 2P (крист.) = 2PCI_3$ 5 CI2 + 2 P = 2PCI5

$$5Cl_2 + 2Sb = 2SbCl_5$$

Образует соединения с другими галогенами:

$$Cl_2 + F_2 = 2CIF$$

 $Cl_2 + 3F_2 = 2CIF_3$, $t = 200-400$ °C
 $Cl_2 + 5F_2 = 2CIF_5$

С Водой

Хлор растворяется вводе (в 1 объеме воды растворяется 2 объема хлора) с образованием "хлорной воды":

$$Cl_2 + H_2O = HCI + HCIO$$

Со щелочами

```
Cl_2 + 2KOH(xол) = KCl + KClO(гипохлорит) + H<sub>2</sub>O 
 <math>Cl_2 + 6KOH(rop) = 5KCl + KClO<sub>3</sub>(xлорат) + 3H<sub>2</sub>O
```

С Бескислородными Кислотами

$$Cl_2$$
 + HBr = 2HCl + Br₂
 Cl_2 + HI = 2HCl + l_2

Солями

$$Cl_2 + 2Nal = 2NaCl + l_2$$

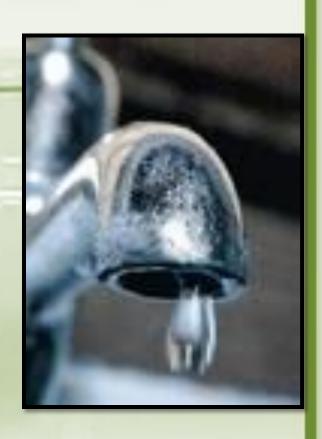
 $Cl_2 + FeCl_2 = 2FeCl_3$

Алор

Хлор является активным реагентом в органическом синтезе. Его атомы входят в состав молекул соединений, относящихся к различным классам органических веществ.

- CnH2n+2 + Cl2 (на свету) = CnH2n+1Cl + HCl [р. Семенова]
 2. CnH2n + Cl2 = CnH2nCl2
 - 3. CnH2n-2 + Cl2 в несколько стадий
 - 4. C6H6 + Cl2 (AlCl3) = C6H5Cl + HCl C6H6 + Cl2 (на свету) = гексахлоран

Гомологи бензола + Cl2 (на свету) = замещение по радикальному механизму (Cl к альфа-H)


5. R-CH2-COOH + Cl2 (PCl5) = R-CHCl-COOH + HCl

• Для обеззараживания «хлорирования».

• В химическом производстве соляной кислоты, хлорной извести, бертолетовой соли, хлоридов металлов, ядов,

воды —

• Производство хлорорганических инсектицидов — веществ, убивающих вредных для посевов насекомых, но безопасных для растений. На получение средств защиты растений расходуется значительная часть

производимого хлора.

• Использовался как оружие массового поражения и в производстве других отравляющих веществ массового поражения: иприт, фосген.

□ Во всех кислородных соединениях галогены проявляют положительную степень окисления, достигшую семи у высших кислородных соединений хлора.

оксиды	КИСЛОТЫ		Названия солей	
	формула	название		
Cl ₂ O	HCIO	Хлорноватистая	Гипохлорит	
(Cl ₂ O ₃)	HCIO ₂	Хлористая	Хлориты	
CIO ₂	-	-	-	
(Cl ₂ O ₅)	HCIO ₃	Хлорноватая	Хлораты	
Cl ₂ O ₇	HCIO ₄	Хлорная	Перхлораты	

Хлорноватистая кислота

□ Получение:

$$Cl_2 + H_2O \leftrightarrow HCIO + HCI$$
.

- □ Свойства:
- очень неустойчива:

$$2HCIO = 2HCI + O_2$$

- очень сильный окислитель; её образованием при взаимодействии хлора с водой объясняются белящие свойства хлора;
- образует соли гипохлориты;
- взаимодействует с щелочью HCI + HCIO + 2KOH = KCI + KCIO + 2H₂O.

Гипохлориты – соли хлорноватистой кислоты

- Смесь солей хлорноватистой и соляной кислот называется жавелевой водой и применяется для отбеливания:

$$2KOH + Cl_2 = KClO + KCl + H_2O.$$

- Гипохлорит кальция (Ca(CIO)₂)- *белильная или хлористая известь* применяется для отбелки растительного волокна (тканей, бумаги), для дезинфекции выгребных ям, отхожих мест, сточных канав и т.д., для дегазации местности, заражённой отравляющими веществами.

Хлорноватая кислота

□ Строение молекулы:

- □ Физические свойства:
 - жидкость.
- □ Химические свойства:
 - сильный окислитель.

Хлораты соли хлорноватой кислоты

□ Получение хлората калия:

```
3КСІО = КСІО_3 + 2КСІ (при нагревании) 6КОН +3СІ_2 = 5КСІ + КСІО3 +3Н_2О (горячий p-p)
```

Свойства хлората калия:

при нагревании разлагаются

$$2KCIO_3 = 2KCI + 3O_2$$
. (бертолетова соль)

- Образует смеси, сильно взрывающиеся при ударе, с горючими веществами (серой, углём, фосфором).
- □ Применение бертолетовой соли:
 - в артиллерийском деле,
 - пиротехнике,
 - производстве спичек.

Хлорная кислота

□ Строение молекулы

- □ Физические свойства:
- -жидкость,
- без цвета,
- замерзает при температуре -112°C.
- □ Химические свойства:
 - очень устойчивая,
 - очень сильная кислота, α = 88%.
- Взаимодействует с фосфорным ангидридом с образованием хлорного ангидрида

□ Выводы

С увеличением валентности хлора растёт устойчивость его кислородных кислот, а их окислительная способность уменьшается:

HCIO HCIO₂ HCIO₃ HCIO₄

окислительные свойства уменьшаются.

Сила кислородных кислот хлора увеличивается с увеличением степени окисления последнего:

HCIO HCIO₂ HCIO₃ HCIO₄

сила кислот увеличивается.

физические свойства хлороводорода

- газ;
- без цвета;
- с резким запахом;
- легко обращается в жидкость;
- хорошо растворяется в воде (в 1л воды 500л хлороводорода);
 - температура плавления -112°C;
 - температура кипения -84°C.
- К нагреванию менее устойчив по сравнению с фтороводородом, но более устойчив в сравнении с бромоводородом и йодоводородом.

Получение хлороводорода

□ В промышленности:

действие концентрированной серной кислоты на соли галогеноводородных кислот

 $2NaCI + H_2SO_4 = NaHSO_4 + 2HCI$

(при очень сильном нагревании).

Соляная кислота

- □ Получение:
- растворением хлороводорода в воде;
- синтез путём сжигания водорода в струе хлора

H2 + CI2 = 2HCI + 183,1 кДж.

- □ Физические свойства:
 - -жидкость;
 - бесцветная;
 - с резким запахом.

Химические свойства:

- легко вступает во взаимодействие с металлами, выделяя водород и образуя соли – хлориды

 $Zn + 2HCI = ZnCI_2 + H_2$

- взаимодействует с основными оксидами CuO + 2HCl = CuCl₂ +H₂O
- взаимодействует с основаниями AI(OH)₃ +3HCI = AICI₃ +3H₂O
- -взаимодействует с солями AgNO₃ + HCI = AgCI +HNO₃
- взаимодействует с аммиаком с образованием солей аммония

NH₃ +HCl = NH₄Cl

- взаимодействует с хлорной известью Ca(ClO)₂ + 4HCl = CaCl₂+2Cl₂ +2H₂O