Общая и неорганическая химия. Лекция 18

Галогены (окончание). Хлор, бром, иод

Галогены в природе

- 11. Хлор (0,19%)
- 43. Бром
- 70. Иод
- 94. Астат

Редкие рассеянные элементы

Карналлит

Сильвинит

- •Галит (каменная соль) NaCl
- •Сильвинит NaCl·KCl)
- •Карналлит KCl·MgCl₂·6H₂O

Галит

Редкие минералы

- *Бромаргирит* AgBr
- *Иодаргирит* AgI
- Лаутарит Ca(IO₃)₂
- Диэтзеит 7Ca(IO₃)₂·8CaCrO₄

Лаутарит

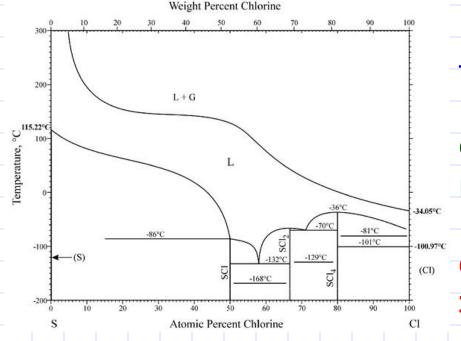
Бромаргирит

Иодаргирит

Хлор, бром, иод: физические свойства

	Cl ₂	Br ₂	I ₂
т. пл., °С	-101,03	-7,2	+113,5*
т. кип., °С	-34,1	+59,8	+184,3*
плотность, г/см ³	1,56 (ж, –35 °C)	3,12 (ж, 20 °C)	4,93 (T)

^{* -} Несмотря на высокие величины давления паров иода над твердым иодом, тройная точка имеет координату давления ниже атмосферного. Это означает, что иод может быть расплавлен при P=1 атм


Окисл. св-ва убывают

Γ_2 : Cl Br I (At)

Неметаллич. св-ва убывают

Примеры:

1.
$$Cl_2(Br_2) + Cu \rightarrow CuCl_2(CuBr_2); S^{TB} + Cl_2^{\Gamma} \rightarrow SCl_4^{\Gamma}; SCl_2^{\Gamma}, S_2Cl_2^{\Gamma}$$

 $1/2 I_2 + Cu \rightarrow CuI; S^{TB} + Br_2^{\Gamma} \rightarrow SBr_2^{\Gamma}; S_2Br_2^{\Gamma};$
 $S + I_2 \neq$

T-x диаграмма S-Cl (см. рис.): три соединения: SCl_4 ; SCl_2 , S_2Cl_2 T-x диаграмма системы S-Br: Фаза S_2Br_2 — конгр. пл. (-40°C) и инконгр. пл. SBr_2 ; T-x диаграмма S-I — нет соединений, диаграмма эвтектического типа

Окисл. св-ва убывают

 Γ_2 : Cl Br I (At)

Неметаллич. св-ва убывают

Примеры (продолжение):

- 3. $H_2(\Gamma) + Cl_2(\Gamma) \square 2 \ HCl(\Gamma); \ \Delta G^{\circ} = -95 \ кДж/моль$ $H_2(\Gamma) + Br_2(\Gamma) \square 2 \ HBr(\Gamma); \ \Delta G^{\circ} = -54 \ кДж/моль$ $H_2(\Gamma) + I_2(T) \square 2 \ HI(\Gamma); \ \Delta G^{\circ} = -1 \ кДж/моль$
- 4. $2KBr + Cl_2 \rightarrow 2KCl + Br_2$ $2KI + Br_2 \rightarrow 2KBr + I_2$ $3I_2 + 10HNO_3$ конц. $\rightarrow 6HIO_3 + 10NO + 2H_2O$ $(HI^{+5}O_3)$

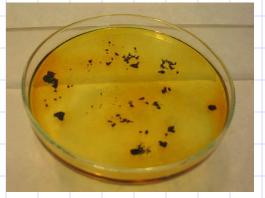
3. Взаимодействие с водой

- $\Gamma_2 + n H_2 O \square \Gamma_2 \cdot n H_2 O$ (гидратация)
- Γ_2 · n H_2 O \square HГ + HГО + (n-1)H $_2$ O (дисмутация)

	Cl ₂	Br ₂	I_2
Растворимость в воде, моль/л	9.10-2	0,5	1.10-3
Степень превр. в Hal и OHal (нас.)	0,5	0,05	0,0017

$$Cl_2 + 2H_2O = HCl + HClO (OBP)$$

 $Cl_2 + 2e^- = 2 Cl^-$
 $Cl_2 + 2H_2O - 2e^- = 2H^+ + 2HClO$


Растворимость галогенов повышается:

B p-pe KI:

$$KI + I_{2(T)} = K[I(I)_{2}]$$

 $I^{-} + I_{2(T)} = [I(I)_{2}]^{-}$

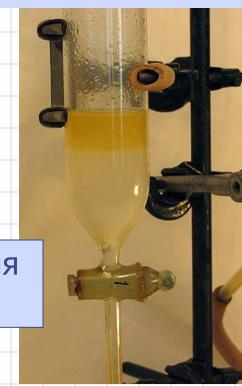
дииодоиодат(I)-ион
$$[I^{-I} \cdots I^{+I} \cdots I^{-I}]$$

В растворах щелочей

$$Br_2 + 2KOH = KBr + KBrO + H_2O$$
 (на холоду)

 $Br_2 + 2e^- = 2 Br^ Br_2 + 4OH^- - 2e^- = 2BrO^- + 2H_2O$
 $3Br_2 + 6KOH = 5KBr + KBrO_3 + 3H_2O$

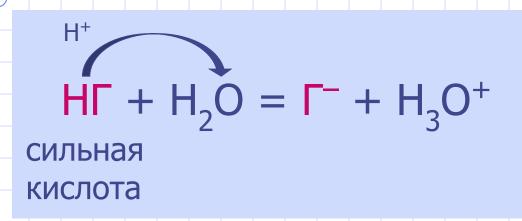
(при нагревании)


 $Br_2 + 2e^- = 2 Br^ Br_2 + 12OH^- - 10e^- = 2BrO_3^- + 6H_2O$

В органических растворителях

Органические растворители, не смешивающиеся с водой, используют для извлечения (экстракции) брома и иода.

Экстракция брома



Галогеноводороды НГ

	HCI	HBr	HI
т. пл., °С	-114,0	-86,9	-50,9
т. кип., °C	-85,1	-66,8	-35,4
Р-римость, г/100 г воды	72,0 (20 °C)	198,2 (20 °C)	234 (10 °C)

 $H\Gamma_{(ж)}$ — бесцв., маловязкие неэлектролиты, неактивны, не реагируют с МО, МСО $_3$, ЩМ !!!

Водные растворы $H\Gamma$ (Γ – Cl, Br, I)

Pастворение HCl в воде

восстановит. св-ва растут

HCI

HBr

HΙ

• KCl +
$$H_2SO_{4 \text{ конц}} = HCl\uparrow + KHSO_4$$

 $HCl + H_2SO_{4 \text{ конц}} \neq$

•
$$KBr + H_2SO_{4 KOHL} = HBr \uparrow + KHSO_4$$

 $2HBr + H_2SO_{4 KOHL} \square Br_2 + SO_2 \uparrow + 2H_2O_4$

•
$$8\text{KI} + 9\text{H}_2\text{SO}_{4 \text{ конц}} = 4\text{I}_2 + \text{H}_2\text{S}\uparrow + 4\text{H}_2\text{O} + 8\text{KHSO}_4$$
 $2\text{KI} + 3\text{H}_2\text{SO}_{4 \text{ конц}} = \text{I}_2 + \text{SO}_2\uparrow + 2\text{H}_2\text{O} + 2\text{KHSO}_4$
 $8\text{HI} + \text{H}_2\text{SO}_{4 \text{ конц}} = 4\text{I}_2 + \text{H}_2\text{S}\uparrow + 4\text{H}_2\text{O}$ и параллельно $2\text{HI} + \text{H}_2\text{SO}_{4 \text{ конц}} = \text{I}_2 + \text{SO}_2\uparrow + 2\text{H}_2\text{O}$

Получение HCI

- В промышл. прямым синтезом:
- $H_2 + Cl_2 = 2HCl$
- В лаборатории:
- NaCl + $H_2SO_4 = HCl\uparrow + NaHSO_4$ (без нагревания) или
- 2NaCl + $H_2SO_4 = 2HCl\uparrow + Na_2SO_4$ (при нагревании)

Получение HBr и HI

- В лаборатории и в промышл. усл. синтез галогенидов фосфора с последующим их необр. гидролизом:
- $2P + 3\Gamma_2 = 2P\Gamma_3$
- $P\Gamma_3 + 3H_2O = 3H\Gamma\uparrow + H_2(PHO_3)$
- Восст. в водн. среде сероводородом:
- $\Gamma_2 + H_2S = S \downarrow + 2H\Gamma$

Кислородные кислоты

Ст. ок.	- C1	Br	I
+I	HClO - слабая	HBrO - слабая	I(OH) – амфот.
+III	$HClO_2$ - средн.	_	
+IV	_		
+V	$HClO_3$ – сильн.	НВгО ₃ –сильн.	HIO_3 – сильн.
+VI			
+VII	HClO ₄ -сильн.	HBrO ₄ -	HIO ₄ - сильн.
		сильн.	H_5IO_6 - слаб.

Взаимодействие с водой

В водном растворе HClO, HClO $_2$, HBrO и H $_5$ IO $_6$ – слабые кислоты:

• HCIO + H₂O
$$\square$$
 CIO⁻ + H₃O⁺; $K_{K} = 2.82 \cdot 10^{-8}$

•
$$HCIO_2 + H_2O \square CIO_2^- + H_3O^+; K_K = 1,07 \cdot 10^{-2}$$

• HBrO +
$$H_2O$$
 \square BrO⁻ + H_3O^+ ; $K_K = 2,06 \cdot 10^{-9}$

•
$$H_5IO_6 + H_2O \square H_4IO_6^- + H_3O^+; K_K = 2,82 \cdot 10^{-2};$$

Остальные кислородсодержащие кислоты – сильные:

•
$$HClO_3 + H_2O = ClO_3^- + H_3O^+$$

•
$$HClO_4 + H_2O = ClO_4^- + H_3O^+$$

Оксиды галогенов: все, кроме ${\rm I_2O_5}$ метастабильны

Ст. ок.	Cl	Br	I
+1	Cl ₂ O	Br ₂ O	
+111	_	Br ₂ O ₃	
+IV	ClO ₂	Br ₂ O ₄	I ₂ O ₄
+V	_	Br ₂ O ₅	I_2O_5
+VI	Cl ₂ O ₆	_	I ₂ O ₆
+VII	Cl ₂ O ₇	_	I ₂ O ₇

Получение и реакции оксидов:

$$Cl_{2} + Ag_{2}O \rightarrow Cl_{2}O + 2AgCl$$
 (в неводном растворителе);
 $3KClO_{3} + 2H_{2}SO_{4} \rightarrow ClO_{2}\uparrow + KClO_{4} + KHSO_{4};$
 $2KClO_{3} + 3H_{2}C_{2}O_{4} \rightarrow ClO_{2}\uparrow + KHC_{2}O_{4} + CO_{2} + H_{2}O$
 $4HClO_{4} + P_{4}O_{10} \rightarrow (HPO_{3})_{4} + 2Cl_{2}O_{7};$

$$_{2}^{\text{H}_{2}\text{SO}_{4}}$$
 \rightarrow $_{3}^{\text{I}_{2}}\text{O}_{5}$ + $_{2}^{\text{O}}\text{O}$ + $_{2}^{\text{O}}\text{O}$

В щелочной среде – дисмутация:

• $3\Gamma_2 + 6NaOH = 5Na\Gamma + Na\GammaO_3 + 3H_2O$

$$\Gamma_2 + 2e^- = 2\Gamma^- (\Gamma_2 - \text{окислитель})$$
 $\Gamma_2 + 12\text{OH}^- - 10e^- = 2\Gamma\text{O}_3^- + 6\text{H}_2\text{O} (\Gamma_2 - \text{восстановитель})$

- $\Delta \phi^{\circ} = \phi^{\circ} Br_2 / Br^- \phi^{\circ} BrO_3^- / Br_2 = 1,09 0,52$ = 0,57B
- $\Delta \phi^{\circ} = \phi^{\circ} I_{2} / I^{-} \phi^{\circ} IO_{3}^{-} / I_{2} = 0.54 0.20 = 0.34B$

В кислотной среде – конмутация:

- $5Na\Gamma + Na\GammaO_3 + 3H_2SO_4 = 3\Gamma_2 + 3Na_2SO_4 + 3H_2O$
- $2\Gamma^{-} 2e^{-} = \Gamma_{2} (\Gamma^{-} восстановитель)$
- $2\Gamma O_3^- + 12H^+ + 10e^- = \Gamma_2^- + 6H_2^- O (\Gamma O_3^+ окислитель)$
- $\Delta \phi^{\circ} = \phi^{\circ} BrO_{3}^{-}/Br_{2} \phi^{\circ} Br_{2}/Br^{-} = 1,51 1,09 = 0,42B$
- $\Delta \phi^{\circ} = \phi^{\circ} IO_3^{-}/I_2 \phi^{\circ} I_2/I^{-} = 1,19 0,54 = 0,65B$