
# ПОЛИМЕРЫ



Учитель химии: МАКАРКИНА

900igr.net

# 1. ПРИРОДНЫЕ И СИНТЕТИЧЕСКИЕ ПОЛИМЕРЫ

**ПОЛИМЕРЫ** - высокомолекулярные соединения, состоящие

Д

Ы

омножества одинаковых структурных

**ЗВЕНЬЕВ** 

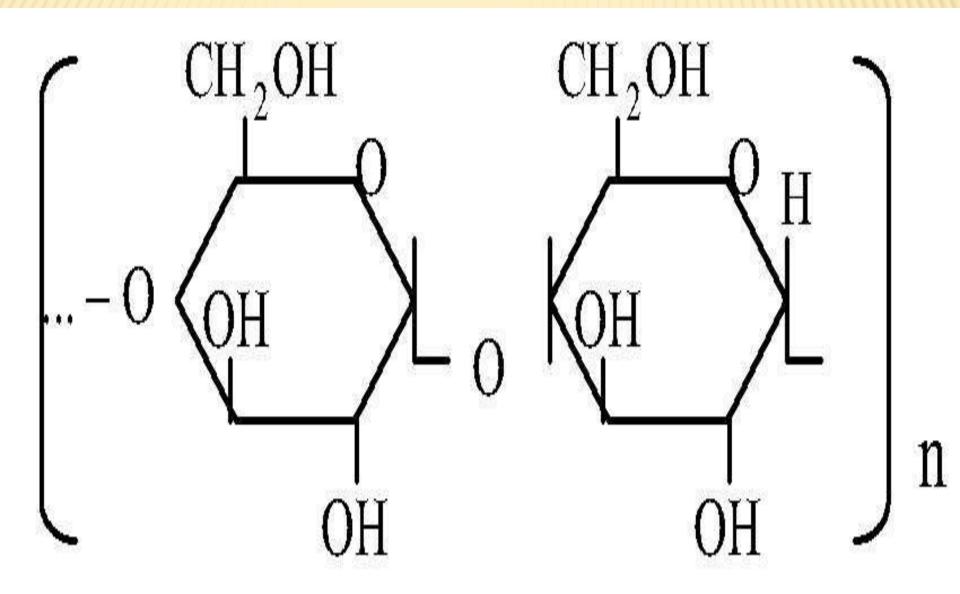
целлюло за



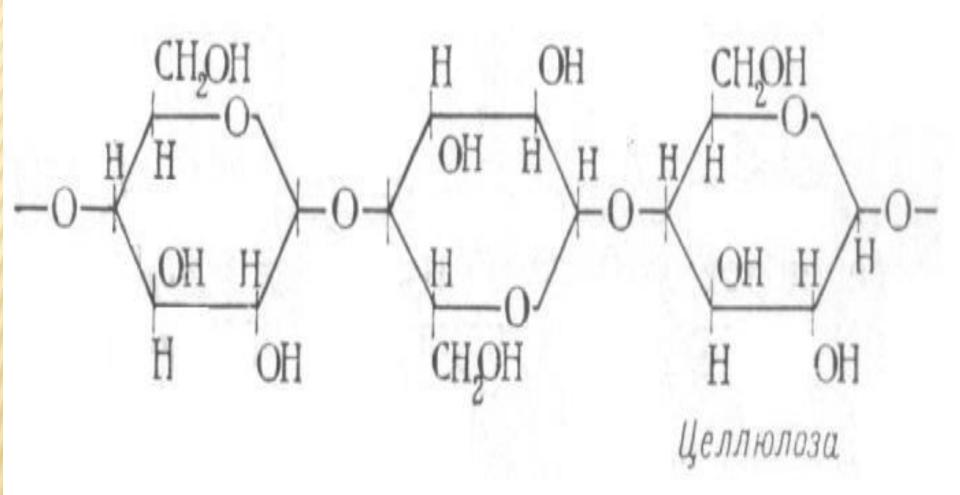
крахма л

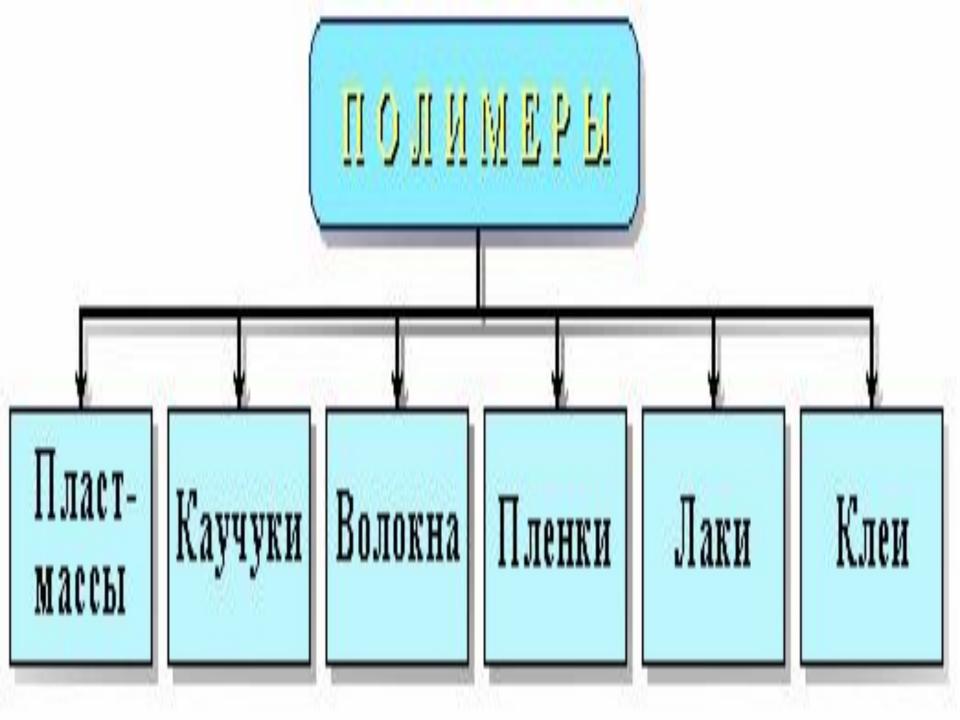


полиэтил ен







#### Диаметр двойной спирали ДНК 20 ангстрем




### КРАХМАЛ

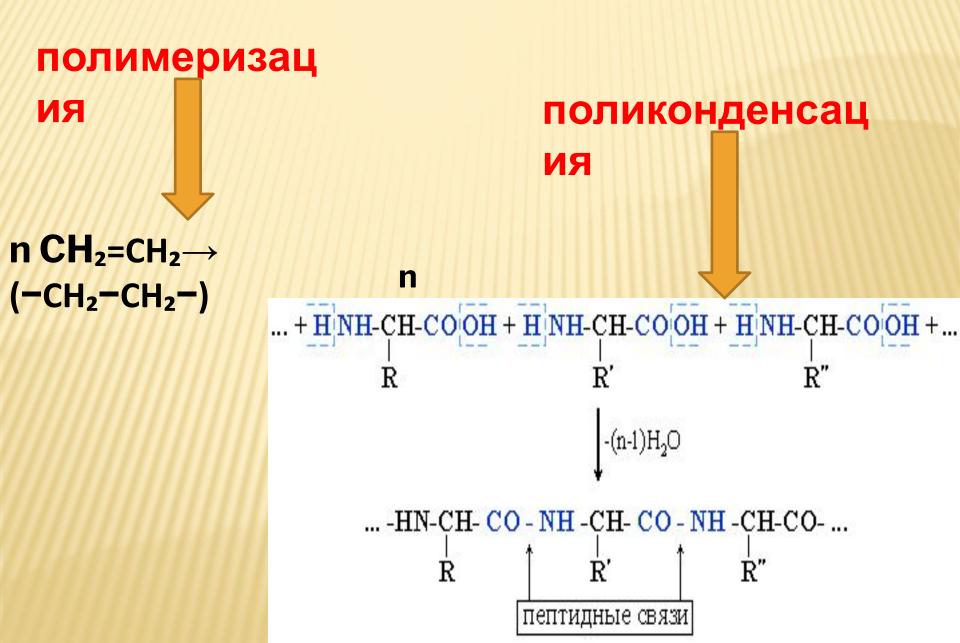


# ЦЕЛЛЮЛО3





#### ПЛЕНКИ


 $egin{aligned} \Pi$ олиэтилен:  $-\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!\mathrm{C$ 

 $CH_3$ 

 $CH_3$ 

Полистирол: 
$$-CH_2-CH-CH_2-CH-CH_2-CH-CH_2$$

#### 2. СПОСОБЫ ПОЛУЧЕНИЯ ПОЛИМЕРОВ



Спос обы полу чени

Я

Поликонден сация

#### Гомополимеризация

 соединение молекул одного мономера

#### Сополиконденсация

- соединение молекул двух и более исходных веществ

#### Гомополиконденса

**ЦИЯ** – соединение молекул одного мономера

**Полимеризац** ия

Это химический процесс соединения исходных молекул мономера в макромолекулы полимера, идущий с образованием побочного низкомолекулярного продукта (чаще всего воды)

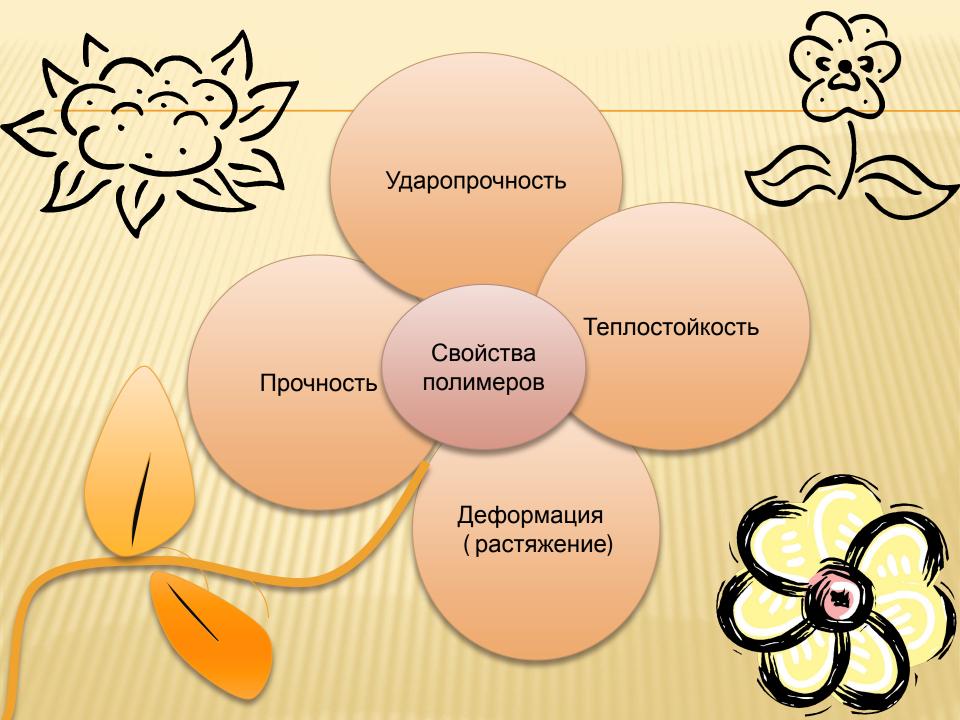
Это химический процесс соединения множества исходных молекул низкомолекулярног о вещества (мономера) в крупные молекулы (макромолекулы) полимера.

# форма макромолекул

Изогнутая (му) (волокна, сера пластичес кая)






Пространстве нная

Я О ,

(каучуки)

Разветвлён ная

Линейн ая



### Полимеры, получаемые реакцией полимеризации

| полимер                               |                                                                         | Формула                                | полимер                                    |                                                                             | Формула                                                |
|---------------------------------------|-------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|
| Название                              | Формача                                                                 | нономера                               | Название                                   | Формала                                                                     | нононера                                               |
| Полиэтилен                            | (-CH <sub>2</sub> -CH <sub>2</sub> -)n                                  | CH <sub>2</sub> =CH <sub>2</sub>       |                                            | (-CH <sub>2</sub> CH <sub>2</sub> -)n                                       | CH <sub>2</sub> CH <sub>2</sub> CH-CH                  |
| Полипропилен                          | (-CH <sub>2</sub> -CH-)n<br>CH <sub>3</sub>                             | CH <sub>2</sub> =CH<br>CH <sub>3</sub> |                                            | CH=CH                                                                       |                                                        |
| Полистирол<br>( поли–<br>винилбензол) | (-CH <sub>2</sub> -CH-)n                                                | CH <sub>2</sub> =CH                    | Полиизопрен                                | (-CH <sub>2</sub> CH <sub>2</sub> -)n<br>C = CH<br>CH <sub>3</sub>          | CH <sub>2</sub> CH <sub>2</sub> C - CH CH <sub>3</sub> |
| Поливинил-<br>хлорид                  | (-CH <sub>2</sub> -CH-)n<br>Cl                                          | CH <sub>2</sub> =CH<br>CI              | Полихлоропрен                              | (-CH <sub>2</sub> CH <sub>2</sub> -)n<br>C = CH                             | CH <sub>2</sub> CH <sub>2</sub> C – CH                 |
| Тефлон                                | (-CF <sub>2</sub> -CF <sub>2</sub> -)n                                  | CF <sub>2</sub> =CF <sub>2</sub>       |                                            |                                                                             |                                                        |
| Полиметил-<br>нетакрилат              | CH <sub>3</sub><br>(-CH <sub>2</sub> -C- )n<br>C=0<br>O-CH <sub>3</sub> | _ ¢=0                                  | Бутадиен—<br>стирольный<br>каччэк<br>(СКС) | (-СН <sub>2</sub> СН <sub>2</sub> -<br>СН=СН<br>сополимер<br>бутадиена и ст |                                                        |

### Полимеры, получаемые реакцией поликонденсации

| ADDRESS CONTROL OF THE SECOND STATE OF THE SEC |                                                                                              |                                                                                                                                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| полимер                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              | Формалы мономеров                                                                                                                  |  |  |  |
| Название                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Формача                                                                                      |                                                                                                                                    |  |  |  |
| Лавсан                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [-0-CH <sub>2</sub> CH <sub>2</sub> -0-C-C-] <sub>n</sub>                                    | но-сн <sub>2</sub> сн <sub>2</sub> -он + но-с-                                                                                     |  |  |  |
| Капрон<br>(полианид-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [-NH-(CH <sub>2</sub> ) <sub>5</sub> -C-] <sub>n</sub>                                       | СН <sub>2</sub> -СН <sub>2</sub> -СН <sub>2</sub> -СН <sub>2</sub> -С-ОН<br>СН <sub>2</sub> -СН <sub>2</sub> -NН СПОЛИКОНДЕНСАЦИЯ) |  |  |  |
| Найлон<br>(полианид-6,6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [-NH-(CH <sub>2</sub> ) <sub>6</sub> -NH-C-(CH <sub>2</sub> ) <sub>4</sub> -C-] <sub>n</sub> | NH <sub>2</sub> -(CH <sub>2</sub> ) <sub>6</sub> -NH <sub>2</sub> + HO-C-(CH <sub>2</sub> ) <sub>4</sub> -C-OH                     |  |  |  |
| Феноло-<br>формаль-<br>дегидные<br>смолы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | он СН2 он СН2 СН2 СН2 п                                                                      | OH                                                                                                                                 |  |  |  |

#### 3.ОСНОВНЫЕ ПОНЯТИЯ

- **МАКРОМОЛЕКУЛА** молекула полимера (макрос большой, длинный)
- **МОНОМЕР** исходная молекула вещества для получения полимера
- **ПОЛИМЕР** молекула высокомолекулярного соединения
- **СТРУКТУРНОЕ ЗВЕНО** многократно повторяющаяся группа атомов

в молекуле полимера СТЕПЕНЬ ПОЛИМЕРИЗАЦИИ - n -

число структурных звеньев в макромолекуле

### 4. ПЛАСТМАССЫ И ВОЛОКНА

**ПЛАСТМАССА** - это материал, в котором связующим компонентом является полимер. Остальное - наполнители, пластификаторы, красители и другие вещества.

**Наполнители**: снижают себестоимость, повышают

прочность и жесткость полимера. (стекловолокно, опилки, асбест и

др.)

### ПЛАСТИФИКАТОР вещества для Ы - эластичноотридания) пластичности при переработке или эксплуатации полимера.

Пластификаторы снижают температуру технологической обработки, улучшают морозостойкость полимеров, но иногда ухудшают их теплостойкость. Некоторые могут повышать огне-, свето- и термостойкость полимеров.

огне-, свето- и термостоикость <u>полимеров</u>. Наиболее распространенные пластификаторы: <u>сложные эфиры, минеральные</u> и

невысыхающие растительные масла.

### ВОЛОКН



#### химическ

**М**скоза, ацетат, капрон,

Переработка природных (целянолоза) или синтетических полимеров

природн **ы**слк, шерсть, хлопок, лен



# ХЛОПОК



# ШЕРСТЬ



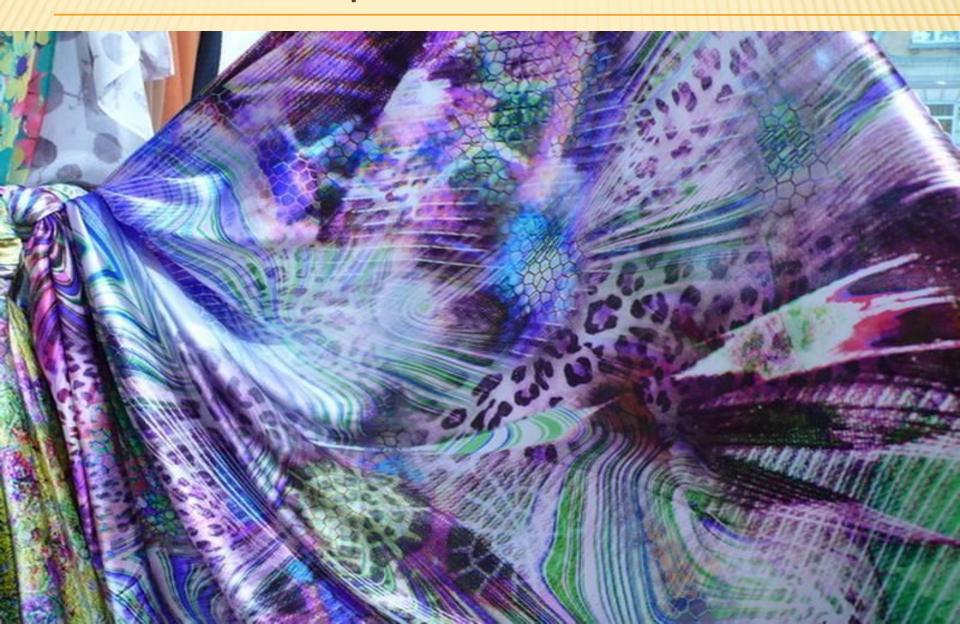
# ШЕЛК



# АБАКА



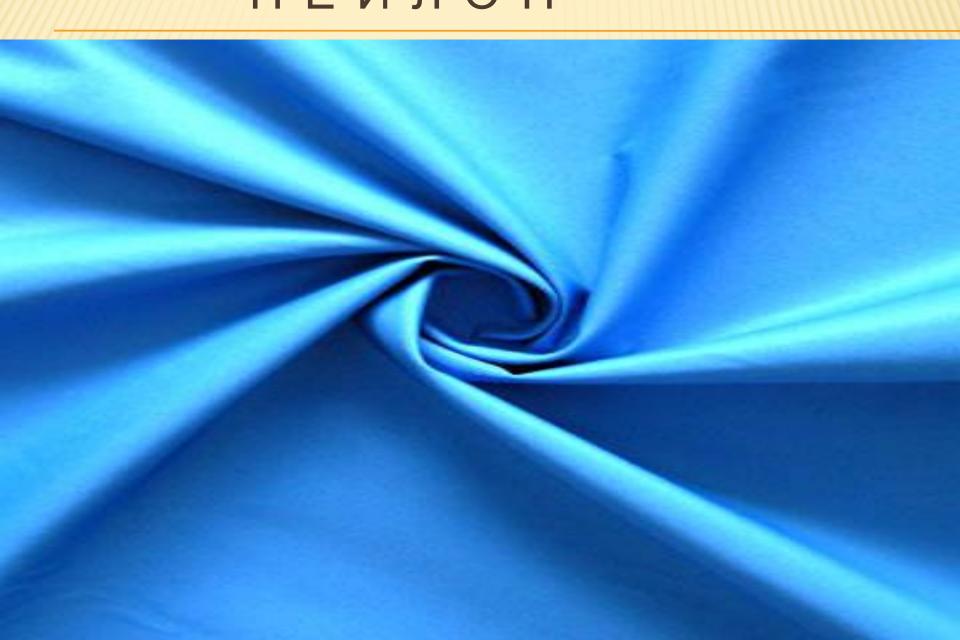
# КОКОСОВАЯ КОЙРА




# ЛЕН





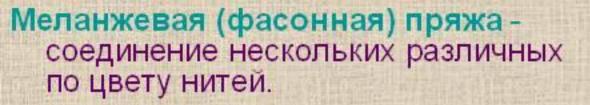

# АЦЕТАТ



# вискоз А



# НЕЙЛОН




#### Искусственное волокно:

 Вискозное - производится из целлюлозы, отличается мягкостью, шелковистостью, очень похожа на хлопок.

#### Синтетическое волокно:

 Акрил по своим свойствам очень напоминает натуральные шерстяные нитки.



Экопряжа- изготовлена из экологически чистых хлопка и льна. которые выращены без применения пестицидов и окрашена исключительно натуральными красителями.







#### НАТУРАЛЬНЫЕ И СИНТЕТИЧЕСКИЕ ВОЛОКНА

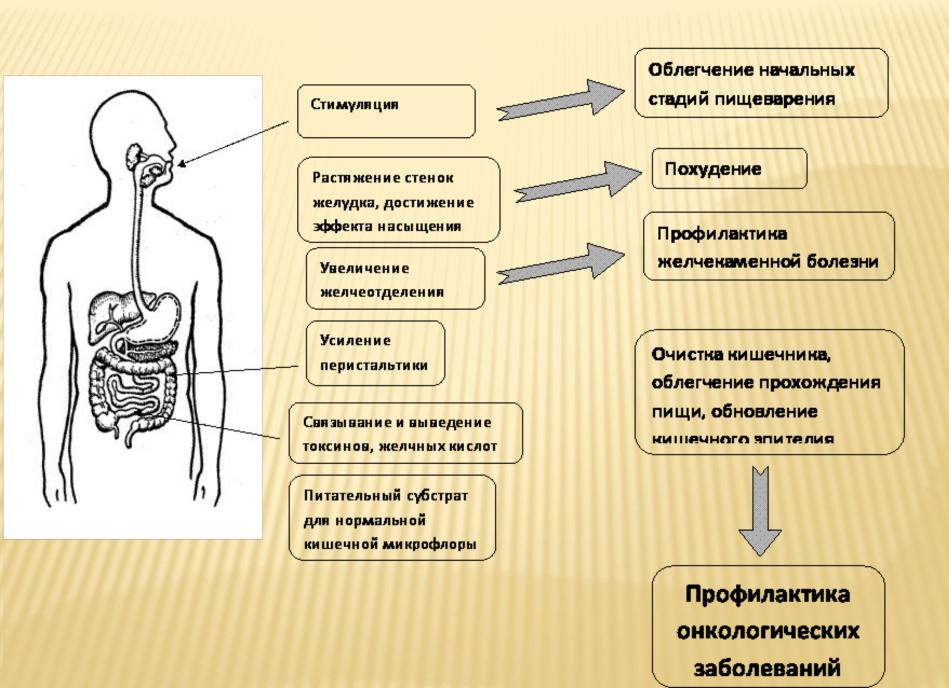
СУЩЕСТВУЕТ ДВА ТИПА ВОЛОКОН: НАТУРАЛЬНЫЕ (ХЛОПОК) И СИНТЕТИЧЕСКИЕ (ПОЛИЭСТЕР, ПОЛИАМИД, ЭЛАСТАН И Т.Д.)

#### Натуральные волокна

- + естественны и приятны на ощупь
- + хорошо впитывают влагу
- + не накапливают статическое электричество
- + износостойки

- удерживают влагу, становясь тяжелее
- во влажном виде липнут к телу, ограничивая его возможность дышать
- очень медленно сохнут
- имеют низкие теплоизоляционные показатели

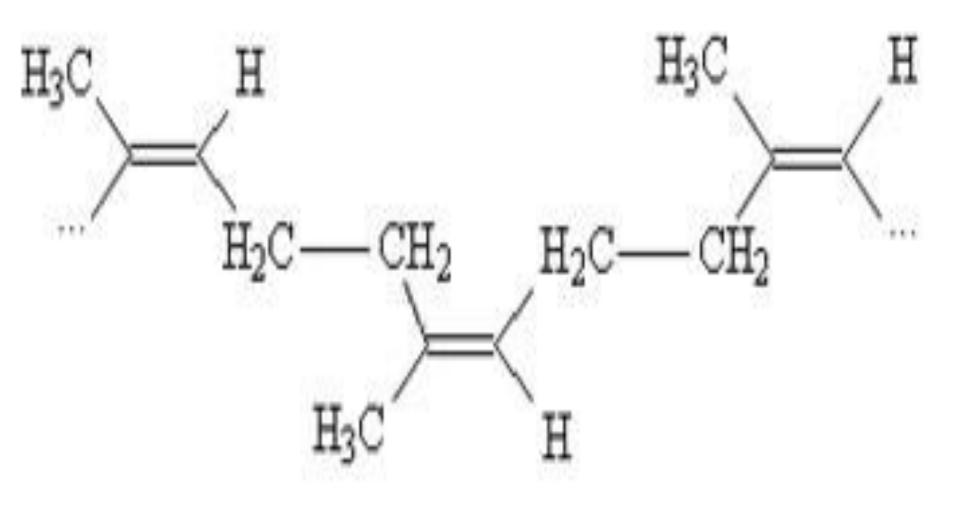
Натуральные волокна идеальны для повседневной одежды.


#### Синтетические волокна

- + очень легки
- + износостойки
- + плохо удерживают влагу
- + быстро сохнут
- + могут эффективно отводить влагу
- + отлично «дышат»


- склонны к поверхностному износу
- накапливают статическое электричество

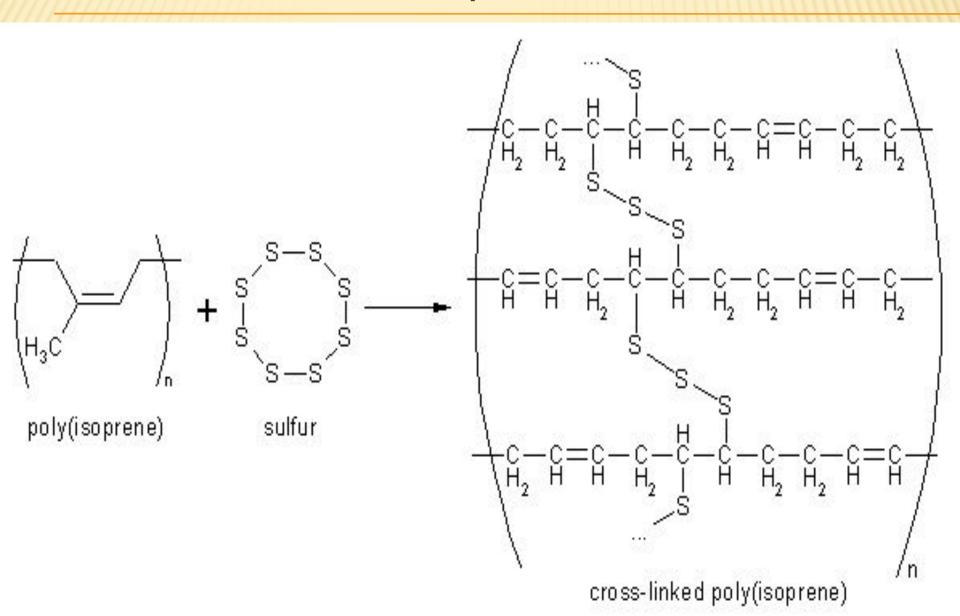
Ткани на основе синтетических волокон подходят для спортивной одежды.


#### Лействие пишевых волокон на организм человека



# КАУЧУК




### НАТУРАЛЬНЫЙ КАУЧУК



# СИНТЕТИЧЕСКИЙ КАУЧУК

$$(-CH_2-CH=CH-CH_2-CH_2-CH-)_n$$
 $(-CH_2-CH=CH-CH_2-CH_2-CH-)_n$ 
 $C_6H_5$ 
бутадиен-стирольный каучук
 $(-CH_2-CH=CH-CH_2-CH_2-CH-)_n$ 
 $C\equiv N$ 
бутадиен-нитрильный каучук

### ВУЛКАНИЗАЦИЯ КАУЧУКА



# изделия из резины









### ПРИМЕНЕНИЕ ПОЛИМЕРОВ



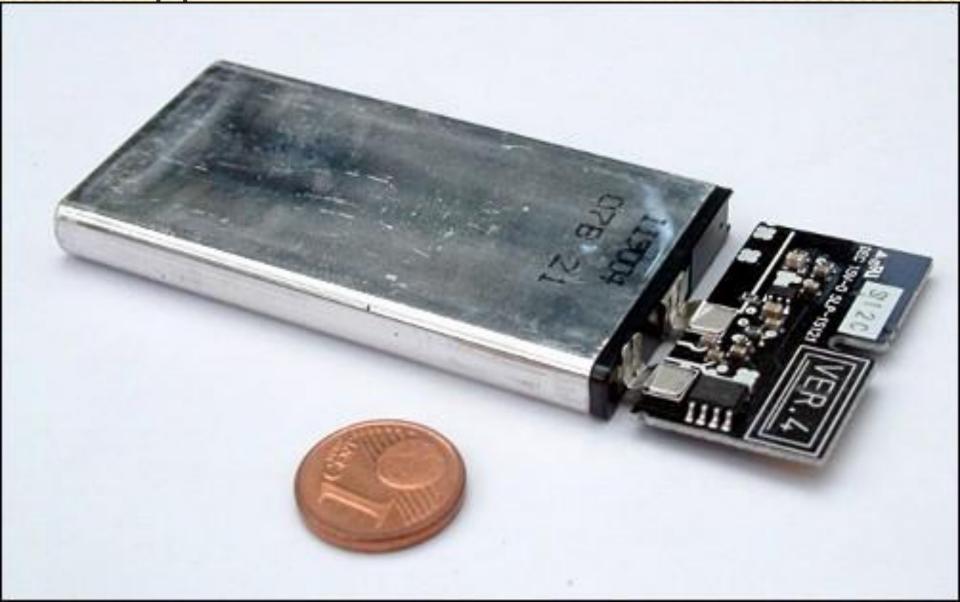



















# ЛИТИЙ-ПОЛИМЕРНЫЙ КОНДЕНСАТОР



### ПОЛИМЕРНЫЕ ТРУБЫ



# Полимеры применяются **применяются**

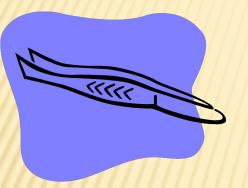
В строительстве

В медицине

В текстильной

промышленности

В сельском хозяйстве










Применение в медицине



Изготовлени е медицински х приборов



Изготовлен ие медицински





**Хирург** ия

V

### Применение в

Изделия из пластимотымерной смолы являются экологичными, долговечными, устойчивыми



Ы

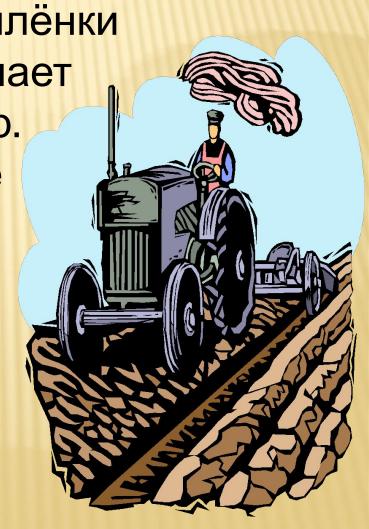
садовые фигурки



интерьер

Ы




Окна ПВХ

### Применение в сельском хозяйстве

**1.**Использование тепличной плёнки из полиэтилена, что повышает урожайность многих культур.

**2**.Мелиорация. Изготовление шлангов и труб для полива.

**3.**Строительство животноводческих помещений.

