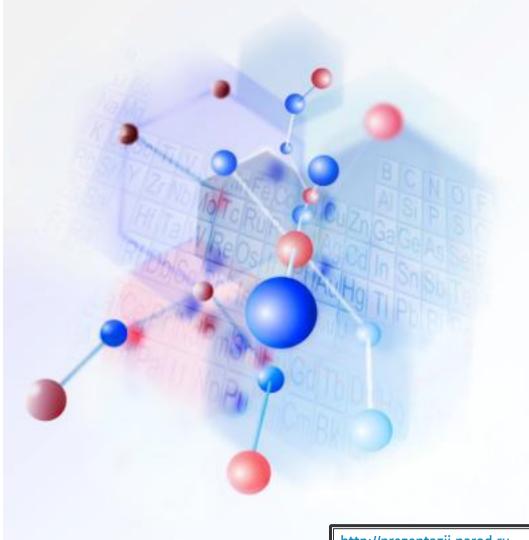
МОУ «СОШ с.Прималкинского»

Минеральные удобрения

Выполнил ученик 9В класса Залепухин Вадим

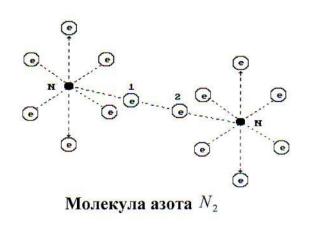

Установлено, что в состав растений входит около 70 элементов.

Некоторые из них – макроэлементы – необходимы растениям в больших количествах;

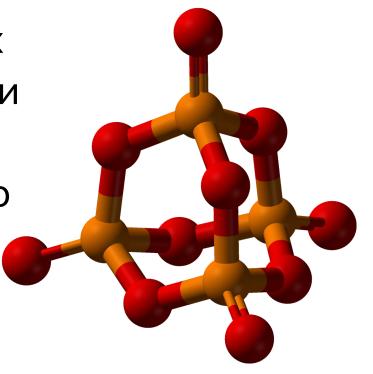
другие же – микроэлементы – требуются в незначительных количествах.

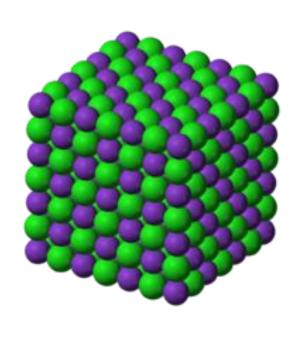
Макроэлементы – углерод, кислород, водород, азот, фосфор, сера, магний, калий, кальций.

Микроэлементы – железо, марганец, бор, медь, цинк, молибден, кобальт и другие.



Три важнейших элемента — <u>азот N</u>, <u>фосфор Р</u> и <u>калий К</u> — необходимы растениям в больших количествах. Поэтому удобрения, содержащие эти элементы, получают в промышленных масштабах.


Азот


Азот входит в состав белков и нуклеиновых кислот. При его недостатке задерживается образование зеленой массы, растения плохо растут, их листья становятся бледно-зелеными и даже желтеют. Азотные удобрения особенно нужны растениям в весенний период.

Фосфор

Фосфор содержится в нуклеиновых кислотах, которые находятся в ядрах клеток растений, животных и грибов, в цитоплазме бактерий. Фосфор особенно необходим при росте и развитии репродуктивных органов растений (цветки, плоды).

Калий

Калий ускоряет процесс фотосинтеза и содействует накоплению углеводов (сахара – в сахарной свекле, крахмала – в картофеле). У злаковых он способствует укреплению стебля и тем самым устраняет их полегание.

Железо, марганец, бор и др.

Железо, марганец, бор и другие микроэлементы играют определенную роль в жизни растений. Так, например, при наличии микроэлемента бора растения лучше усваивают азот, фосфор и калий. Медь, марганец и цинк ускоряют окислительно-восстановительные процессы и тем самым способствуют росту растений. Железо участвует в синтезе хлорофилла.

Все макро- и микроэлементы растения поглощают из почвенного раствора в виде ионов.

$$(NH_4^+, NO_3^-, K^+, H_2PO_4^-, Fe^{3+}, Cu^{2+}u \partial p)$$

Вещества, содержащие три важнейших питательных элемента **N**, **P**, **K** и способные в почвенном растворе диссоциировать на ионы, используют в качестве минеральных удобрений.

Многие минеральные удобрения содержат только один основной питательный элемент. Такие удобрения называются *простыми*. Более ценными являются такие минеральные удобрения, которые содержат два или все три основных питательных элемента. Такие удобрения называются *комплексными*.

Умелое использование минеральных удобрений дает возможность выращивать высокие урожаи сельскохозяйственных растений. Но следует учитывать, что внесение избыточных доз минеральных удобрений, например нитратов, может привести к накоплению их в органах растений. Продукты, полученные из этих растений, непригодны для питания.

Хлорид

Дигидро-

аммония

ортофосфат

Гидроорто-

фосфат

аммония

(NH₄)₂HPO₄

c (NH₄)₂SO₄

и другими

примесями

калия

	M	ине	ральн	УД	обр	ени	Я	
Название удобрения	Химический состав	Цвет и внешний вид	Получение в промышленности и нахождение в природе		Название удобрения	Химический состав	Цвет и внешний вид	Получение в промышленности и нахождение в природе
1. Азотные удобрения					Карбамид	CO(NH ₂) ₂ (46% N)	Белое мелко- кристаллическое, иногда зерни-	Получают при взаимодей- ствии оксида углерода(IV) с аммиаком (при высоких дав-
Нитрат натрия (натриевая селитра)	NaNO ₃ (15–16% N)	роскопическими свойствами (се-	Получают при производстве азотной кислоты. Нитрозные газы (NO и NO ₂), не поглощенные водой, пропускают через растворы соды:				стое гигроскопическое вещество	лении и температуре): $CO_2 + 2NH_3 \longrightarrow$ $\longrightarrow CO(NH_2)_2 + H_2O$
					2. Фосфорные удобрения			
		рый цвет придают примеси)	$Na_2CO_3 + 2NO_2 \longrightarrow$ $\longrightarrow NaNO_3 + NaNO_2 + CO_2$ Нитрит натрия окисляется в		Простой супер- фосфат	Са(H ₂ PO ₄) ₂ · 2H ₂ O CaSO ₄ · 2H ₂ O (до 20% P ₂ O ₅)	Серый мелко- зернистый по- рошок	Получают при взаимодей- ствии фосфоритов или апати- тов с серной кислотой:
			нитрат натрия.					$Ca_3(PO_4)_2 + 2H_2SO_4 \longrightarrow$ $Ca(H_2PO_4)_2 + 2CaSO_4$
Нитрат калия	KNO ₃ (12,5–13% N)	Белое кристал-	Сравнительно небольшие за- лежи KNO ₃ находятся в Сред-		Двойной супер-	Ca(H ₂ PO ₄) ₂ ·H ₂ O (40% P ₂ O ₅)	Сходен с про-	Производство осуществля- ют в две стадии:
(калийная селитра)		СТВО	ней Азии. В промышленности его получают так:		фосфат		фатом	a) $Ca_3(PO_4)_2 + 3H_2SO_4 \longrightarrow$ $\longrightarrow 2H_2PO_3 + 3C_2SO_4 \longrightarrow$

 $KCl + NaNO_3 \stackrel{100 \text{ °C}}{\longleftrightarrow}$

→ NaCl + KNO₃ Из-за меньшей растворимости NaCl равновесие удается сместить вправо. Белое кристал-Получают при нейтрализации 48-60%-ной азотной кислическое, весьма гигроскопичелоты аммиаком: ское вещество $NH_3 + HNO_3 \longrightarrow NH_4NO_3$

Полученный раствор концентрируют и в специальных башнях производят кристаллизацию. Белый (из-за Получают при взаимодейстпримесей серый вии аммиака с серной кислоили зеленоватой: тый) кристалли-

 \longrightarrow 2H $_3$ PO $_4$ + 3CaSO $_4$ CaSO $_4$ оседает, и его отделяют фильтрованием: 6) $Ca_3(PO_4)_2 + 4H_3PO_4 \longrightarrow$ \longrightarrow 3Ca(H₂PO₄)₂

3. Калийные удобрения KCl Белое мелко-Хлорид калия встречается $(52-60\% \text{ K}_2\text{O})$ кристалличев природе в виде минерала ское вещество сильвинита (NaCl·KCl).

ния

4. Комбинированные удобрения

NH4H2PO4 Белый (из-за Получают при взаимодей-

(с примесями) примесей сероствии ортофосфорной кисловатый) кристалты с аммиаком: лический поро- $NH_3 + H_3PO_4 \longrightarrow NH_4H_2PO_4$ шок

Такой же, как Получают аналогично дидигидроорто гидроортофосфату аммония: фосфат аммо- $2NH_3 + H_3PO_4 \longrightarrow$ $\longrightarrow (NH_{\lambda})_{2}HPO_{\lambda}$

 $(NH_4)_2SO_4$ (20,5-21% N)

пичен

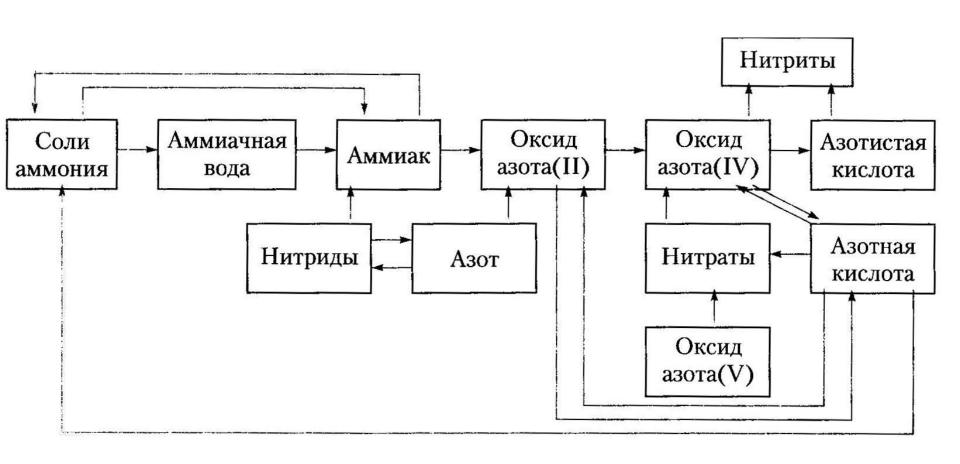
NH₄NO₃

(15-16% N)

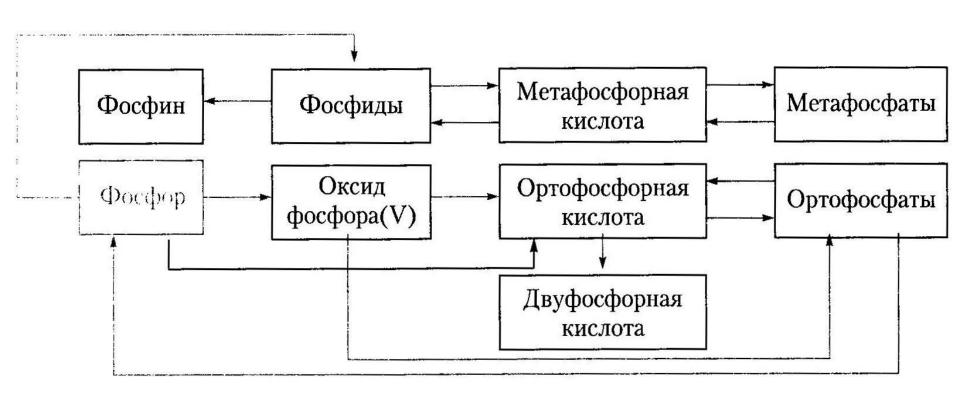
Humpam

аммония

селитра)


Сульфат

аммония


(аммиачная

 $2NH_2 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$ ческий порошок, слабо гигроско-

Генетическая связь между азотом и его важнейшими соединениями

Генетическая связь между фосфором и его важнейшими соединениями

КОНЕЦ