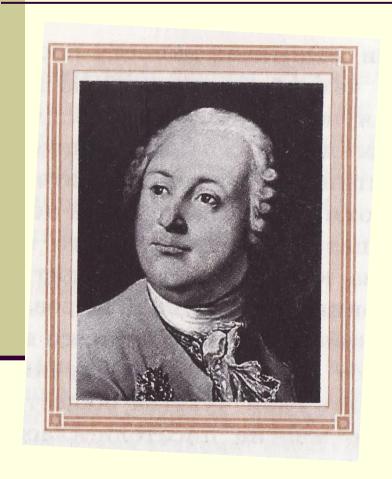
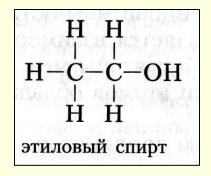
Муниципальное общеобразовательное учреждение «Балезинская средняя общеобразовательная школа №1»

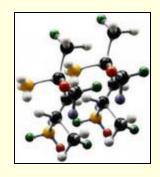

«Химия — союзник медицины»

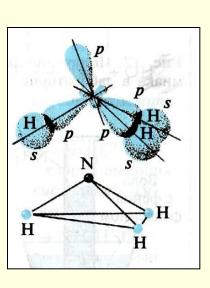
Выполнила:

Князева Яна, ученица 9А класса

Руководитель:


Касимова Галина Леонидовна, учитель химии


«Медик без довольного познания химии совершенен быть не может.» М. В. Ломоносов


Почему выбрала эту тему?

- Больше узнать о связи химии с медициной;
- Какие лекарства применяются для лечения болезней;
- узнать их химические названия

Цели:

- Как можно больше узнать о связи химии с медициной;
- Подробно узнать классификацию лекарственных веществ;
- Провести несколько опытов с лекарственными веществами.

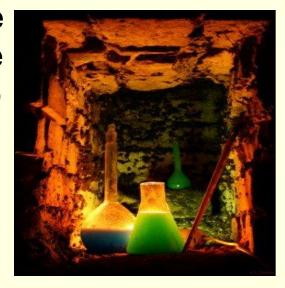
Немного истории

Связь химии с медициной.

Связь эта возникла давно. Еще в XVI в. широкое развитие получило медицинское направление в химии, основоположником которого стал швейцарский врач Парацельс (1493-1541).

"Цель химии состоит... в изготовлении лекарств",- писал он. Парацельс считал, что все материальное, в том числе и живой организм, состоит из трех начал, находящихся в разных соотношениях: соли (тела), ртути (души) и серы (духа). Болезни проистекают от недостатка в организме одного из этих "элементов".

XVI—XVIII вв. – период иатрохимии


Иатрохимия (от греч. iatrós — врач и Химия) — направление в естествознании и медицине, отводившее основную роль в возникновении болезней нарушениям химических процессов в организме и ставившее задачу отыскания химических средств их лечения.

Одним из наиболее видных представителей нового направления в химии был немецкий химик Иоганн Рудольф Глаубер (1604-1668). Врач по образованию, он занимался разработкой и совершенствованием методов получения различных химических веществ.

Иатрохимия

- сыграла важную роль в борьбе с догмами средневековой схоластической медицины.
- ввела представления о кислотности и щелочности, открыла много новых соединений.
- ❖В ее эпоху начали ставить первые воспроизводимые (хотя далеко не всегда методологически правильные) эксперименты.

Фармацевтическая промышленность_

Является сравнительно молодой отраслью производства. Еще в середине 19 столетия производство лекарственных средств в мире было сосредоточено в разобщенных аптеках, в которых провизоры изготовляли препараты по только им известным рецептам.

До 30-х годов 20 века в фармацевтической химии основное место занимали лекарственные растения (травы).

В середине 30-х годов 20 века фармацевтическая промышленность стала на путь целенаправленного органического синтеза.

Источники получения фармацевтических препаратов

Лекарственные вещества

Неорганические

Сырье для получения: горные породы, руды, газы, вода озер и морей, отходы химических производств

Органические

Сырье для получения: природный газ, нефть, каменный уголь, сланцы, древесина и травы.

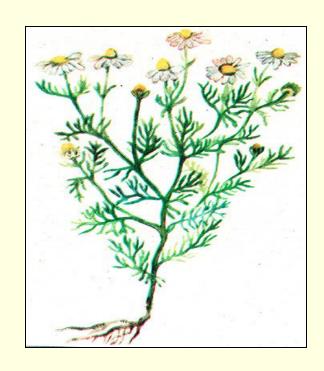
Лекарственные травы

Зверобой продырявленный

В народной медицине растение используют в виде настойки для полоскания полости рта при ангине и стоматите, в виде компрессов в случае кровоточащих ран, настоев и отваров при гепатитах, холециститах, метеоризме, при болезнях почек, при поносах и т.д.


Липа сердцелистная

В лечебных целях используется липовый цвет. Липа — это популярное потогонное средство, которое используется при простудных заболеваниях. В народной медицине липа применяется в виде полосканий при воспалениях горла и ротовой полости.


Тысячелистник обыкновенный

Тысячелистник содержит эфирные масла и обладает противовоспалительным и бактерицидным свойствами. Его употребляют при заболеваниях желудочно-кишечного тракта, язвенной болезни и гастрите. Тысячелистник — эффективное глистогонное средство.

Ромашка лекарственная

ромашку применяют для лечения заболеваний печени, почек, мочевого пузыря, головных болей и т.д. Широко используют ромашку как мочегонное и потогонное средство. Ромашку применяют и при гастритах, язвенной болезни желудка и двенадцатиперстной кишки, а также при колитах.

Классификация лекарственных веществ

Лекарственные вещества

Фармакологическая классификация

фармакологическая классификация более удобна для медицинской практики.

Химическая классификация

Химическая классификация более удобна для химиков, работающих в области синтеза лекарственных веществ.

Фармакологическая классификация

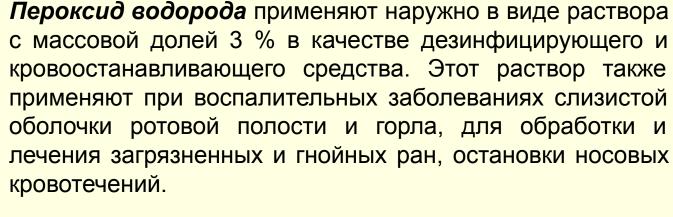
- ❖снотворные и успокаивающие (седативные);
- ❖сердечно сосудистые;
- анальгезирующие (болеутоляющие),жаропонижающие и противовоспалительные;
- ❖противомикробные (антибиотики, сульфаниламидные препараты и др.);
- ❖местно-анестезирующие;
- ◆антисептические;
- ◆диуретические;
- **⋄**гормоны;
- **♦**витамины и др.

Химия и фармакология

Фармакология — это наука о лекарственных средствах, действии различных химических соединений на живые организмы, о способах введения лекарств в организмы и о взаимодействии лекарств между собой.

Бромид натрия и бромид калия применяют в медицине как успокаивающие средства, нормализующие нарушенное соотношение между процессами возбуждения и торможения в коре головного мозга.

Гидрокарбонат натрия (питьевая сода) применяется внутрь при повышенной кислотности желудочного сока, язвенной болезни желудка и двенадцатиперстной кишки, изжоге, подагре, диабете, катарах верхних дыхательных путей. Наружно употребляется как слабая щелочь при ожогах, для полосканий, промываний и ингаляций при насморке, конъюнктивитах, стоматитах, ларингитах и др.


Иод в виде спиртового раствора или раствора иода в водных растворах иодидов калия и натрия применяют в качестве дезинфицирующего и кровоостанавливающего средства.

Карбонат кальция применяют внутрь не только как кальциевый препарат, но и как средство, адсорбирующее и нейтрализующее кислоты.

Кислород в медицине используют для газового наркоза. Вдыхание чистого кислорода иногда назначают при отравлениях и некоторых тяжелых заболеваниях.

Перманганат калия находит широкое применение в медицине. Его разбавленные растворы используют в качестве дезинфицирующего и кровоостанавливающего средства.

Сульфат натрия декагидрат Na2SO4*H2O (Глауберова соль). В медицине глауберову соль применяют как слабительное средство. Может быть использована в качестве противоядия при отравлении солями бария и свинца,

Сульфат бария используют в медицине вследствие его нерастворимости и благодаря способности сильно поглощать рентгеновское излучение. В виде суспензии его применяют при рентгеноскопии желудочно-кишечного тракта как рентгеноконтрастное вещество.

Сульфат цинка гептагидрат ZnSO2*7H2O.

Используют для приготовления глазных капель, как вяжущее средство и антисептик.

Сульфат железа (II) гептагидрат FeSO4*7H2O. В медицине используют при лечении анемии (малокровия), наступающей вследствие дефицита железа в организме, а также при слабости и истощении организма.

Полимеры в медицине

Ассортимент полимерных материалов, используемых в медицине, с каждым годом расширяется. Это полиэтилен низкого давления, пенополиуретан, полипропилен, эпоксидные, полиэфирные и кремнийорганические полимеры. Нашли применения и специальные клеи, которые хирургическом вмешательстве при склеивать ткани, заменяя шовный материал. Не отказались в медицине и от резины: от резиновой до специальной резиновой надувной кровати для больных обширными ожогами.

Вокруг салициловой кислотой

Салициловая кислота – кристаллический порошок, трудно растворимый в холодной воде и легко растворяющийся в горячей. Опыты:

В пробирку поместим взятый на кончике скальпеля бихромат калия (яд) и несколько миллилитров разбавленной (примерно 10%-ной) серной кислоты. После добавления салициловой кислоты (тоже на кончике скальпеля) слегка нагреем пробирку. Если осторожно понюхать смесь, то по резкому запаху можно обнаружить образование метановой (муравьиной) кислоты.

Ацетилсалициловая кислота.

Таблетку ацетилсалициловой кислоты растворим при слабом нагревании в 200 мл воды. Проверим реакцию раствора с помощью индикаторной бумаги. Поскольку в веществе содержится незатронутая карбоксильная группа салициловой кислоты СООН, среда оказывается кислой.

Реактив Коберта.

Нальем в пробирку Змл концентрированной серной кислоты и осторожно добавим 3 капли формалина, то есть раствора метаналя. Полученный раствор называется реактивом Коберта. Если ничтожно малое количество салициловой кислоты поместить на часовое стекло, добавить 2 капли серной кислоты и через несколько минут смешать с одной каплей реактива, то вскоре появится розовое окрашивание(иногда для этого необходимо слабое нагревание).

К малому количеству приготовленной ранее раствора салициловой кислоты добавим несколько капель раствора сульфата меди и нагреем. Мы увидим яркое изумрудно-зеленое окрашивание.

Выделение из чая кофеина

Выделим из чая вещество, которое подымает жизненный тонус и бодрит. Речь идет о кофеине (это вещество сначала было найдено в кофейных зернах, там его еще больше, чем в чайных листьях). Строго говоря, в чае есть несколько тонизирующих веществ - витамины, эфирные масла и т. д. Но ведущая роль принадлежит кофеину, из класса алкалоидов.

Опыт:

В металлический тигель положите измельченный в ступке черный чай и примерно 2 г оксида магния.

Смешайте оба вещества и поставьте тигель на огонь. Сверху на тигель поставьте фарфоровую чашку и налейте в нее холодной воды. В присутствии оксида магния кофеин будет возгоняться. Попадая на холодную поверхность, кофеин вновь вернется в твердое состояние и осядет на дне чашки в виде бесцветных кристаллов. Прекратите нагрев, осторожно снимите чашку с тигля и соскребите кристаллы в чистую склянку.

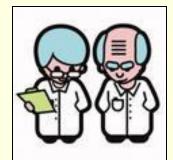
Несколько кристаллов положите на фарфоровую плитку и капните одну-две капли концентрированной азотной кислоты. Нагревайте пластинку до тех пор, пока смесь на ней не станет сухой. Кофеин при этом окислится и превратится в заметную, оранжевого цвета, амалиновую кислоту.

Заключение

В заключении хочется сказать, что подбирая материал к данному реферату, я много нового узнала и нашла ответы на вопросы, которые меня интересовали.

Связь химии с медициной возникла давно. Еще в XVI в. широкое развитие получило медицинское направление в химии, основоположником которого стал швейцарский врач Парацельс (1493-1541).

Узнала, что все лекарственные вещества могут быть разделены на две большие группы: неорганические и органические. Те и другие получаются из природного сырья и синтетически. Рассмотрела некоторые лекарственные растения, которые растут в наших краях, на основе которых готовятся многие фармацевтические препараты.


Интересно было узнать, что соли и кислоты, которые мы проходим по школьной программе, широко применяются в медицине как лекарственные препараты от разных недугов.

Лекарственные вещества разделяют по двум классификациям: фармакологическая и химическая. Первая классификация более удобна для медицинской практики. В основу химической классификации положено химическое строение и свойства веществ; более удобна для химиков, работающих в области синтеза лекарственных веществ.

Опыты с салициловой кислотой дают нам наглядное представление о ее химических свойствах, а из обычного черного чая можно получить кофеин, вещество, которое подымает жизненный тонус и бодрит.

Итак, как сказал М. В. Ломоносов: «Медик без довольного познания химии — совершенен быть не может». Поэтому, кто хочет поступать в медицинские ВУЗы очень хорошо должны изучать химию в школе и читать дополнительную литературу.

Библиография

- •Л. Власов, Д. Трифонов «Занимательно о химии»
- •Э. Гроссе, X. Вайсмантель «Химия для любознательных. Основы химии и занимательные опыты», Ленинград: издательство «Химия» ленинградское отделение, 1978.
- •К.А. Макаров «Химия и медицина». Москва: Просвещение, 1998
- •Советская Энциклопедия Словарь, Москва 1989